Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of taste receptor may have shaped human sensitivity to toxic compounds

26.07.2005


Researchers have found new evidence suggesting that the ability to taste bitter compounds has been strongly advantageous in human evolution.



Animals rely on chemical perception, including the senses of taste and smell, for protection against the harmful compounds found in nature. It is widely believed that behavioral and dietary choices may have reduced the importance of such chemical perception in higher primates, and particularly in humans.

In new work, researchers including Nicole Soranzo of University College London and Bernd Bufe of the German Institute of Human Nutrition have shed light on the potential role natural selection has played in forming our present sensitivities and protecting us from harmful natural chemicals. The research team analyzed the nucleotide sequence of a human gene encoding a bitter-taste receptor that mediates recognition of a class of naturally ubiquitous, but toxic, cyanide-releasing compounds. By analyzing sequences from a large sample of individuals representing 60 human populations, the researchers found evidence that specific variants of the receptor gene have been strongly favored in the early stages of human evolution. Employing additional gene sequence analyses, the authors estimated that the favorably selected versions of the receptor gene arose prior to the expansion of humans out of Africa.


The researchers went on to show experimentally that such variants of the receptor, when expressed in individual cells, conferred an increased sensitivity toward several harmful compounds found in nature.

The work strongly supports a pivotal role for bitter-taste perception in toxin avoidance in humans, an attribute that could have come into particular play during periods of expansion into new environments. More broadly, the work contributes to the debate on the mechanisms governing the evolution of chemical sensory perception and on the role of diet as a selective force in human evolution.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>