Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of taste receptor may have shaped human sensitivity to toxic compounds

26.07.2005


Researchers have found new evidence suggesting that the ability to taste bitter compounds has been strongly advantageous in human evolution.



Animals rely on chemical perception, including the senses of taste and smell, for protection against the harmful compounds found in nature. It is widely believed that behavioral and dietary choices may have reduced the importance of such chemical perception in higher primates, and particularly in humans.

In new work, researchers including Nicole Soranzo of University College London and Bernd Bufe of the German Institute of Human Nutrition have shed light on the potential role natural selection has played in forming our present sensitivities and protecting us from harmful natural chemicals. The research team analyzed the nucleotide sequence of a human gene encoding a bitter-taste receptor that mediates recognition of a class of naturally ubiquitous, but toxic, cyanide-releasing compounds. By analyzing sequences from a large sample of individuals representing 60 human populations, the researchers found evidence that specific variants of the receptor gene have been strongly favored in the early stages of human evolution. Employing additional gene sequence analyses, the authors estimated that the favorably selected versions of the receptor gene arose prior to the expansion of humans out of Africa.


The researchers went on to show experimentally that such variants of the receptor, when expressed in individual cells, conferred an increased sensitivity toward several harmful compounds found in nature.

The work strongly supports a pivotal role for bitter-taste perception in toxin avoidance in humans, an attribute that could have come into particular play during periods of expansion into new environments. More broadly, the work contributes to the debate on the mechanisms governing the evolution of chemical sensory perception and on the role of diet as a selective force in human evolution.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>