Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolution of taste receptor may have shaped human sensitivity to toxic compounds


Researchers have found new evidence suggesting that the ability to taste bitter compounds has been strongly advantageous in human evolution.

Animals rely on chemical perception, including the senses of taste and smell, for protection against the harmful compounds found in nature. It is widely believed that behavioral and dietary choices may have reduced the importance of such chemical perception in higher primates, and particularly in humans.

In new work, researchers including Nicole Soranzo of University College London and Bernd Bufe of the German Institute of Human Nutrition have shed light on the potential role natural selection has played in forming our present sensitivities and protecting us from harmful natural chemicals. The research team analyzed the nucleotide sequence of a human gene encoding a bitter-taste receptor that mediates recognition of a class of naturally ubiquitous, but toxic, cyanide-releasing compounds. By analyzing sequences from a large sample of individuals representing 60 human populations, the researchers found evidence that specific variants of the receptor gene have been strongly favored in the early stages of human evolution. Employing additional gene sequence analyses, the authors estimated that the favorably selected versions of the receptor gene arose prior to the expansion of humans out of Africa.

The researchers went on to show experimentally that such variants of the receptor, when expressed in individual cells, conferred an increased sensitivity toward several harmful compounds found in nature.

The work strongly supports a pivotal role for bitter-taste perception in toxin avoidance in humans, an attribute that could have come into particular play during periods of expansion into new environments. More broadly, the work contributes to the debate on the mechanisms governing the evolution of chemical sensory perception and on the role of diet as a selective force in human evolution.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>