Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decreased breast cancer survival associated with high TRAIL-R2 expression


High expression of TRAIL-R2, a cell surface receptor that triggers cell death, has been shown to be associated with a decrease the survival rates of breast cancer patients according to a study published by Yale Cancer Center researchers in Clinical Cancer Research.

Analyzing 20-year follow-up data from breast cancer patients, using an automated quantitative analysis system (AQUATM) to review tissue microarray specimens, the researchers identified increased intensity of TRAIL receptor expression. AQUATM scores were correlated with clinical and pathologic variables. In addition, TRAIL-R1 and TRAIL-R2 expression were both studied on 95 unmatched normal breast specimens.

Yale Researchers concluded that while TRAIL-R1 expression was not associated with survival, high TRAIL-R2 expression strongly correlated with decreased survival.

"A number of TRAIL receptor targeting therapies are currently in clinical development. As with other targeted therapies, it is important to determine which patients are more likely to respond to these therapies," said Harriet Kluger, MD, author on the study and Assistant Professor of Medicine in the Section of Medical Oncology at Yale School of Medicine. "AQUATM allows us to stratify patients based on expression levels of drug targets in an automated, unbiased fashion. This will help us reach our ultimate goal of practicing personalized medicine, by treating patients based on characteristics of individual tumors,"

The AQUATM system measures and localizes specific variations in protein expression within tissue automatically, with a high level of precision. The multi-tissue proteomic analysis system combines fluorescence-based imaging with automated microscopy and high-throughput tissue microarray technologies. HistoRx has exclusively licensed the AQUATM technology that was developed by David Rimm, M.D., Ph.D. and Robert Camp, M.D., of the Yale University School of Medicine and Yale Cancer Center.

Janet Rettig Emanuel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>