Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Divergent life history shapes gene expression in brains of salmon

20.07.2005


Roughly 15 percent of genes are expressed differently among males of same species



Scientists working with salmon have found that gene expression in the brain can differ significantly among members of a species with different life histories. Their study indicates that roughly 15 percent of Atlantic salmon genes show differential expression in males who migrate from their freshwater birthplaces to mature in oceans versus those who do not leave the freshwater environment to mature.

The researchers, at Harvard University, the University of Massachusetts and the US Geological Survey, report the finding in the current issue of Proceedings of the Royal Society B. They compared female salmon, male salmon that will eventually undertake the well-known journey from their river birthplaces to oceans –- and then migrate heroically back upstream one to three years later to spawn –- and males of the same age known as "sneakers" that mature at greatly reduced size without leaving freshwater.


"The finding that hundreds of the nearly 3,000 genes we studied were expressed differently in the brains of sneakers and other male salmon came as a surprise," says Nadia Aubin-Horth, a postdoctoral researcher in the Bauer Center for Genomics Research in Harvard’s Faculty of Arts and Sciences. "Since these males of the same species in the same wild environment differed only in their life history, we did not expect the expression of so many of their genes to differ."

Aubin-Horth and her colleagues were also surprised by some of the 17 separate classes of genes demonstrating differing activity levels.

"It makes sense that growth genes are suppressed in sneakers and genes associated with reproduction are expressed more, since these fish essentially trade bodily size for faster reproductive maturity," she says. "However, it was unexpected, for instance, that genes associated with learning and memory would be expressed at higher levels in the brains of sneakers. It’s not yet clear why disparities like this would arise."

Aubin-Horth says it is impossible to tell as of yet whether the changes in gene expression are a cause or effect of the various physiological differences between sneakers and other salmon. Their work suggests that the "default" life cycle, in which male salmon spend several years in oceans before returning to freshwater to reproduce, may actually result from active inhibition of development into a sneaker. Previous studies have found that the proportion of sneakers in various salmon populations varies wildly; it appears that males that grow fastest early in life go on to become sneakers.

The study by Aubin-Horth and her colleagues differed from most examinations of divergent life histories, in any vertebrate species, in that it combined the use of wild individuals, caught in a tributary of the Connecticut River in western Massachusetts, with new functional genomics technologies to simultaneously monitor thousands of genes in individual tissues.

"Research like this was very difficult in the past because we lacked adequate tools to measure gene expression," Aubin-Horth says. "As a result almost nothing is known about the molecular basis of developmental plasticity such as that seen among ’sneaker’ salmon."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>