Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-molecule plays big role in birth defects

20.07.2005


UF Genetics Institute researcher finds way to explore role of microRNAs in specific tissue



University of Florida researchers have learned how to selectively shut down a flyweight-sized genetic molecule that packs a heavyweight punch, a discovery that may help doctors better understand cancer, birth defects and other health problems. The finding, which will be reported this week in the online Proceedings of the National Academy of Sciences, deals with tiny strands of genetic material called microRNAs.

Once thought to be little more than cellular debris, these short strands of RNA may perform a vital role in healthy development by strategically turning off gene activity.


By genetically modifying mice, scientists with the UF Genetics Institute were able to get the first-ever picture of how limbs would develop in a vertebrate without the help of microRNAs. When microRNAs were not available to turn off certain genes, the mice grew malformed, nonfunctional limbs.

The finding may provide insight into human birth defects, but scientists say its greater value will be as a new technique to study the function and malfunction of microRNAs, more than 200 types of which are thought to exist in the human body.

"We looked at limb development because it’s a great place to demonstrate the technique," said Brian Harfe, Ph.D., an assistant professor of molecular genetics and microbiology in the College of Medicine and lead author of the report. "We were able to show it’s feasible to eliminate the activity of microRNAs from a specific tissue while the rest of the tissue remains normal."

Had researchers inhibited microRNAs in every single cell, Harfe said the mouse embryos would survive little more than seven days after fertilization. "That isn’t enough time to study development," Harfe said. "Most structures, such as the heart, the gut and the lungs, haven’t even formed yet. Now we can bypass the problem of early mortality and study the structures as they develop. It’s a new tool for the genetic researcher’s toolbox."

No more than five years ago, microRNAs were considered to be little more than light seasoning in the genetic soup, distant and unnecessary cousins to the main ingredients, DNA, which contains all the genetic instructions for the human body, and RNA, which translates DNA’s message into proteins - the building blocks of life.

Scientists now think the pint-sized pieces of RNA may control as much as one-third of human gene expression by seeking out and binding to messenger RNA, thereby adjusting the protein-manufacturing process.

But for microRNAs to do their jobs, scientists believe an enzyme called Dicer must be present. Harfe, who worked in collaboration with researchers at the University of California at San Francisco and the Harvard Medical School, genetically modified mice so that scientists could eliminate Dicer in specific tissues at any stage in the developmental process, thus opening a window into the role of microRNAs in limb development.

In cases where Dicer is not present in developing limb tissue, Harfe showed that microRNAs were not processed and limbs were visibly smaller. "Many of the birth defects we see in people are mimicked by the defects we’ve seen in this mouse model," said Xin Sun, Ph.D., an assistant professor of genetics at the University of Wisconsin who is familiar with the research but who did not participate in it. "It indicates mutations in microRNAs might be responsible for birth defects, and this has not been discovered before. Using this same approach, we can look at other embryonic organs and ask what microRNAs do as a group."

Other research indicates microRNAs may play a role in diseases ranging from cancer to AIDS. "There is indirect evidence that if you remove two microRNAs from the human genome, leukemia develops," Harfe said. "We envision our mouse model may be a tool to directly test how microRNAs are involved in human cancers."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>