Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Micro-molecule plays big role in birth defects

20.07.2005


UF Genetics Institute researcher finds way to explore role of microRNAs in specific tissue



University of Florida researchers have learned how to selectively shut down a flyweight-sized genetic molecule that packs a heavyweight punch, a discovery that may help doctors better understand cancer, birth defects and other health problems. The finding, which will be reported this week in the online Proceedings of the National Academy of Sciences, deals with tiny strands of genetic material called microRNAs.

Once thought to be little more than cellular debris, these short strands of RNA may perform a vital role in healthy development by strategically turning off gene activity.


By genetically modifying mice, scientists with the UF Genetics Institute were able to get the first-ever picture of how limbs would develop in a vertebrate without the help of microRNAs. When microRNAs were not available to turn off certain genes, the mice grew malformed, nonfunctional limbs.

The finding may provide insight into human birth defects, but scientists say its greater value will be as a new technique to study the function and malfunction of microRNAs, more than 200 types of which are thought to exist in the human body.

"We looked at limb development because it’s a great place to demonstrate the technique," said Brian Harfe, Ph.D., an assistant professor of molecular genetics and microbiology in the College of Medicine and lead author of the report. "We were able to show it’s feasible to eliminate the activity of microRNAs from a specific tissue while the rest of the tissue remains normal."

Had researchers inhibited microRNAs in every single cell, Harfe said the mouse embryos would survive little more than seven days after fertilization. "That isn’t enough time to study development," Harfe said. "Most structures, such as the heart, the gut and the lungs, haven’t even formed yet. Now we can bypass the problem of early mortality and study the structures as they develop. It’s a new tool for the genetic researcher’s toolbox."

No more than five years ago, microRNAs were considered to be little more than light seasoning in the genetic soup, distant and unnecessary cousins to the main ingredients, DNA, which contains all the genetic instructions for the human body, and RNA, which translates DNA’s message into proteins - the building blocks of life.

Scientists now think the pint-sized pieces of RNA may control as much as one-third of human gene expression by seeking out and binding to messenger RNA, thereby adjusting the protein-manufacturing process.

But for microRNAs to do their jobs, scientists believe an enzyme called Dicer must be present. Harfe, who worked in collaboration with researchers at the University of California at San Francisco and the Harvard Medical School, genetically modified mice so that scientists could eliminate Dicer in specific tissues at any stage in the developmental process, thus opening a window into the role of microRNAs in limb development.

In cases where Dicer is not present in developing limb tissue, Harfe showed that microRNAs were not processed and limbs were visibly smaller. "Many of the birth defects we see in people are mimicked by the defects we’ve seen in this mouse model," said Xin Sun, Ph.D., an assistant professor of genetics at the University of Wisconsin who is familiar with the research but who did not participate in it. "It indicates mutations in microRNAs might be responsible for birth defects, and this has not been discovered before. Using this same approach, we can look at other embryonic organs and ask what microRNAs do as a group."

Other research indicates microRNAs may play a role in diseases ranging from cancer to AIDS. "There is indirect evidence that if you remove two microRNAs from the human genome, leukemia develops," Harfe said. "We envision our mouse model may be a tool to directly test how microRNAs are involved in human cancers."

John Pastor | EurekAlert!
Further information:
http://www.vpha.health.ufl.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>