Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover more about how cancer cells form and grow

19.07.2005


University of Michigan researchers have figured out one more component in cancer cells’ aggressive growth---and hope that knowledge can help kill the cells.

In the July issue of Cancer Cell, the scientists explain how cancer tumor cells attach themselves to a protein on the surface of cells lining blood vessel walls. When this attachment happens, it tells the cancer cell to grow and develop blood vessels, which feed the cell. Cun-Yu Wang, senior author on the paper, said this discovery could help in the fight against cancer. "The blood supply is key for tumor growth and tumor development," said Wang, the Richard H. Kingery Endowed Collegiate Professor at the U-M School of Dentistry. "If you cut off the blood supply, you stop cancer development."

Wang collaborated with researchers Qinghua Zeng, Shenglin Li, Douglas B. Chepeha, Jong Li, Honglai Zhang, Peter J. Polverini, Jacques Nor and Jan Kitajewski on the paper. Scientists have heavily studied cancer cells’ secretion of proteins to form blood vessels. But Wang said when researchers tried to turn off that process, some tumors responded and some did not, which left him curious about how to develop a better treatment.



Rather than simply looking for a better way to interrupt the protein secretion, Wang and colleagues looked for other ways that tumor cells might develop their blood supply, a process called angiogenesis.

Wang’s team has studied hepatocyte growth factor, known as HGF, to better understand its function in the formation of cancerous tumors in the head and neck. Part of what HGF does is to get neighboring blood vessels to grow toward, and then into, the tumor. What they did not know was how HGF got the process of angiogenesis started, said Zeng, first author on the paper and a research fellow at U-M. So they looked at head and neck cancer cells to see if growth factors prompted the release of proteins related to angiogenesis. That led to an exploration of direct interaction between the tumor and endothelial cells. Blood vessels are lined by endothelial cells.

Examining data on the genes HGF activates, the team found that the one specific gene, called jagged1, is among the most expressed. Jagged1 binds to a specific protein on the surface of the endothelial cells. Wang speculated that if jagged1 is not secreted but found on the surface of tumor cells, then perhaps HGF gets jagged1 levels to increase, and that prompts a connection between the tumor and endothelial cells.

Sorting out this connection, Wang considered involvement of notch, another protein on the endothelial cells. Notch is known to help in the formation of blood cells, and jagged1 binds to notch. Wang said he found it interesting that although much research has looked at cancer cells’ secretion of proteins to form blood vessels, notch’s function in cancer angiogenesis has not gotten the same attention. Notch, Wang said, pulls this whole complex operation together.

After this contact stimulates angiogenesis, the tumor gets nutrition and grows faster, Wang explained. Conversely, Wang hopes that blocking the signaling pathway can cut off the tumor’s nutrition and stop its growth. If this development pans out as a treatment, Wang said he envisions a two-pronged approach that attacks the protein secretion and the cell contact to kill cancer cells.

The next question Wang wants to explore is how these connections lead to metastasis, the spread of cancer throughout the body. He speculates that inflammation could trigger that pathway, and wants to look at the potential for controlling inflammation to stop tumor development. "Head and neck cancer is under studied," Wang said. "The five-year survival rate hasn’t improved in decades. We want to change that."

Colleen Newvine | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancercell.org/

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>