Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover more about how cancer cells form and grow

19.07.2005


University of Michigan researchers have figured out one more component in cancer cells’ aggressive growth---and hope that knowledge can help kill the cells.

In the July issue of Cancer Cell, the scientists explain how cancer tumor cells attach themselves to a protein on the surface of cells lining blood vessel walls. When this attachment happens, it tells the cancer cell to grow and develop blood vessels, which feed the cell. Cun-Yu Wang, senior author on the paper, said this discovery could help in the fight against cancer. "The blood supply is key for tumor growth and tumor development," said Wang, the Richard H. Kingery Endowed Collegiate Professor at the U-M School of Dentistry. "If you cut off the blood supply, you stop cancer development."

Wang collaborated with researchers Qinghua Zeng, Shenglin Li, Douglas B. Chepeha, Jong Li, Honglai Zhang, Peter J. Polverini, Jacques Nor and Jan Kitajewski on the paper. Scientists have heavily studied cancer cells’ secretion of proteins to form blood vessels. But Wang said when researchers tried to turn off that process, some tumors responded and some did not, which left him curious about how to develop a better treatment.



Rather than simply looking for a better way to interrupt the protein secretion, Wang and colleagues looked for other ways that tumor cells might develop their blood supply, a process called angiogenesis.

Wang’s team has studied hepatocyte growth factor, known as HGF, to better understand its function in the formation of cancerous tumors in the head and neck. Part of what HGF does is to get neighboring blood vessels to grow toward, and then into, the tumor. What they did not know was how HGF got the process of angiogenesis started, said Zeng, first author on the paper and a research fellow at U-M. So they looked at head and neck cancer cells to see if growth factors prompted the release of proteins related to angiogenesis. That led to an exploration of direct interaction between the tumor and endothelial cells. Blood vessels are lined by endothelial cells.

Examining data on the genes HGF activates, the team found that the one specific gene, called jagged1, is among the most expressed. Jagged1 binds to a specific protein on the surface of the endothelial cells. Wang speculated that if jagged1 is not secreted but found on the surface of tumor cells, then perhaps HGF gets jagged1 levels to increase, and that prompts a connection between the tumor and endothelial cells.

Sorting out this connection, Wang considered involvement of notch, another protein on the endothelial cells. Notch is known to help in the formation of blood cells, and jagged1 binds to notch. Wang said he found it interesting that although much research has looked at cancer cells’ secretion of proteins to form blood vessels, notch’s function in cancer angiogenesis has not gotten the same attention. Notch, Wang said, pulls this whole complex operation together.

After this contact stimulates angiogenesis, the tumor gets nutrition and grows faster, Wang explained. Conversely, Wang hopes that blocking the signaling pathway can cut off the tumor’s nutrition and stop its growth. If this development pans out as a treatment, Wang said he envisions a two-pronged approach that attacks the protein secretion and the cell contact to kill cancer cells.

The next question Wang wants to explore is how these connections lead to metastasis, the spread of cancer throughout the body. He speculates that inflammation could trigger that pathway, and wants to look at the potential for controlling inflammation to stop tumor development. "Head and neck cancer is under studied," Wang said. "The five-year survival rate hasn’t improved in decades. We want to change that."

Colleen Newvine | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancercell.org/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>