Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living with salt

13.07.2005


Weizmann Institute scientists uncover a strategy that helps a plant-like, microscopic alga to happily proliferate in such inhospitable surroundings; their findings have unexpectedly shed light on the working of our own kidneys



Over the years, a number of Weizmann Institute scientists have addressed the question of how molecules essential to life, such as proteins, have adapted to function in extreme environments. The proteins they investigated were isolated from halophilic (salt-loving) microorganisms from the Dead Sea. After determining the 3-D structures for several halophilic proteins, researchers were able to explain how these proteins not only cope with high salinities, but are actually "addicted" to them. However, the alga Dunaliella salina is an organism of a different streak: it is able to grow in any salinity, from the extremes of the Dead Sea to nearly fresh water. The uniquely salt-tolerant Dunaliella, which is commercially grown as a source of natural beta carotene, has been investigated at the Weizmann Institute for over 30 years. Yet, the secrets of its exceptionally successful adaptation to salt remained unresolved.

In a recent paper published in the Proceedings of the National Academy of Sciences, USA (PNAS), Institute scientists Prof. Ada Zamir and Dr. Lakshmanane Premkumar of the Institute’s Biological Chemistry Department and Prof. Joel Sussman and Dr. Harry Greenblatt of the Structural Biology Department revealed the structural basis of a remarkably salt-tolerant Dunaliella enzyme, a carbonic anhydrase, which may hold the key. Comparisons with known carbon anhydrases from animal sources showed that the Dunaliella enzyme shares a basic plan with its distant relatives, but with a few obvious differences. The most striking of these is in the electrical charges on the proteins’ surfaces: Charges on the salt-tolerant enzyme are uniformly negative (though not as intensely negative as those in halophilic proteins), while the surfaces of carbonic anhydrases that don’t tolerate salt sport a negative/positive/ neutral mix. This and other unique structural features may enable the algal carbonic anhydrase to be active in the presence of salt, though not dependent on it. In a surprise twist, the researchers discovered that one other known carbonic anhydrase - found in mouse kidney - sported a similar, salt-tolerant construction. Pondering why a structure conferring salt tolerance should evolve once in a Dead Sea organism and once in a mouse has led the researchers to some new insights into kidney physiology. The researchers hope that the knowledge gleaned from their study of a tiny alga might provide the basis for designing new drugs that could target enzymes based on their salt tolerance.


Prof. Joel Sussman’s research is funded by the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; the Joseph and Ceil Mazer Center for Structural Biology; the Charles A. Dana Foundation; the Divadol Foundation; the Jean and Jula Goldwurm Memorial Foundation; the late Sally Schnitzer, New York, NY; the Kalman and Ida Wolens Foundation; and the Wolfson Family Charitable Trust. Prof. Joel Sussman is the incumbent of the Morton and Gladys Pickman Chair in Structural Biology.

Alex Smith | EurekAlert!
Further information:
http://www.jgordonassociates.com

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>