Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Very Defensive Caterpillar

13.07.2005


Caterpillars are bleeding defensive! Insects are known to lack an antibody-mediated immune response, and research in caterpillars has recently shown that, instead, they produce protective proteins in response to bacterial infection. The pattern recognition receptors (PRR) and antibacterial effectors produced at a first infection still function to protect against a repeated challenge. These results raise important issues in insect research which will be reported by Dr. Ioannis Eleftherianos at the Society of Experimental Biology Annual Meeting at the Universitat Autonoma de Barcelona on Wednesday 13th of July.



After being fed on a diet of antibiotics, hawkmoth (Manduca sexta) caterpillars were infected by non-pathogenic bacteria (E. coli), followed by exposure to a second, but lethal insect pathogen (Photorhabdus). Investigation of their blood then showed that antibacterial peptides were being produced by the so-called ‘fat-body’, an organ specialised in protein production. These proteins appear to be able to persist from the initial benign E. coli infection and then confer resistance against the second, usually lethal, infection by the pathogen. Using RNAi techniques workers at the University of Bath have shown that several different proteins can confer this protective effect against subsequent infections.

Micro-organisms such as bacteria, fungi and nematodes are often used as biocontrol agents against insects. It had always been assumed that insects in the field would be naïve to such control agents but these results raise the possibility that control with one pathogen may confer resistance to another. Most experiments on insect immunity are conducted in the laboratory on insects often fed on antibiotic containing diet so these results suggest that the immune response of insect constantly exposed to pathogens in the field may be very different from all the work described in the laboratory. This raises new challenges for the field and places into question the relevance of laboratory based studies on immunity.

Diana van Gent | alfa
Further information:
http://www.sebiology.org/vcsearch.asp

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>