Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The presence of oxygen on carbon nanotubes enhances interaction with ammonia

12.07.2005


Discovery could help in the development of sensors against chemical threats



Single-walled carbon nanotubes (SWNTs), which could play an important role in developing sensors against chemical threats, have enhanced interaction with ammonia because of the presence of oxygen groups on the nanotubes, researchers at Temple University have discovered.

Their findings, "Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities," are reported online July 8 in the Journal of the American Chemical Society.


Eric Borguet, Ph.D., associate professor of chemistry at Temple and the study’s lead author, said scientists have shown that in using nanotubes for sensors, their conductivity can be changed by the presence of ammonia.

"Theorists have tried for a long time to explain this interaction, and their calculations have typically shown that the interaction between the carbon nanotubes and ammonia is very weak, and in fact, very few ammonia molecules would stick to the nanotubes at room temperature," said Borguet.

But, he said, the theorists are studying pure nanotubes--often referred to as "perfect" nanotubes--with no oxygen.

Through the use of infrared spectroscopy, Borguet and his collaborators believe they are the first to reveal that the SWNT purification process, which introduces oxygen to the nanotubes, changes the interaction with chemical species such as ammonia.

"It is no longer pure carbon; there are oxygen-containing groups on the purified nanotubes," said Borguet. "And it is the presence of those groups that enhances the interaction between the nanotubes and the ammonia molecules at any temperature.

"We take the nanotubes and heat them up to 500 degrees Kelvin and then cool them down to 94 degrees Kelvin, and we see ammonia sticking, but as we go higher and higher in temperature, the ammonia signal is going down," said Borguet.

"One of the things that is happening as we heat to higher and higher temperatures is we are driving off the oxygen-containing functionality," added Borguet. "Once that oxygen-containing functionality is gone, ’poof,’ the ability of the ammonia to stick is gone. But if we re-expose the SWNTs to room temperature and ambient air, the ability to interact comes back."

Borguet said the researchers were not able to detect the oxygen after exposure to air, so the nanotubes may be reoxidizing at a very small level.

He also emphasized that although they are unable to detect the ammonia sticking to the SWNTs at higher temperatures, the lack of detection may be the result of using the infrared spectroscopy technique.

"There may be another technique with a higher sensitivity that can detect the presence of ammonia," Borguet said. "We can’t say there is no ammonia, but if there is, it is below our group’s detection capability."

Borguet said that this discovery of oxygen impacting the interaction of ammonia with the SWNTs could eventually be important in developing small sensors for Homeland Security.

"Ultimately, you’d like to make a chemical nose, a device that can distinguish between chemicals which might have different hazards associated with them," he said. "You’d like to be able to identify the chemicals and what type of concentration might be present.

"These finding are a step in the right direction," Borguet added. "This could be an important discovery because theorists have all been calculating using ’perfect’ nanotubes, but the experiments are not being carried out on ’perfect’ nanotubes.

"The theorists can no longer ignore that there is going to be oxygen-containing functionality when looking at the effects of these nanotubes in the future."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>