Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The presence of oxygen on carbon nanotubes enhances interaction with ammonia

12.07.2005


Discovery could help in the development of sensors against chemical threats



Single-walled carbon nanotubes (SWNTs), which could play an important role in developing sensors against chemical threats, have enhanced interaction with ammonia because of the presence of oxygen groups on the nanotubes, researchers at Temple University have discovered.

Their findings, "Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities," are reported online July 8 in the Journal of the American Chemical Society.


Eric Borguet, Ph.D., associate professor of chemistry at Temple and the study’s lead author, said scientists have shown that in using nanotubes for sensors, their conductivity can be changed by the presence of ammonia.

"Theorists have tried for a long time to explain this interaction, and their calculations have typically shown that the interaction between the carbon nanotubes and ammonia is very weak, and in fact, very few ammonia molecules would stick to the nanotubes at room temperature," said Borguet.

But, he said, the theorists are studying pure nanotubes--often referred to as "perfect" nanotubes--with no oxygen.

Through the use of infrared spectroscopy, Borguet and his collaborators believe they are the first to reveal that the SWNT purification process, which introduces oxygen to the nanotubes, changes the interaction with chemical species such as ammonia.

"It is no longer pure carbon; there are oxygen-containing groups on the purified nanotubes," said Borguet. "And it is the presence of those groups that enhances the interaction between the nanotubes and the ammonia molecules at any temperature.

"We take the nanotubes and heat them up to 500 degrees Kelvin and then cool them down to 94 degrees Kelvin, and we see ammonia sticking, but as we go higher and higher in temperature, the ammonia signal is going down," said Borguet.

"One of the things that is happening as we heat to higher and higher temperatures is we are driving off the oxygen-containing functionality," added Borguet. "Once that oxygen-containing functionality is gone, ’poof,’ the ability of the ammonia to stick is gone. But if we re-expose the SWNTs to room temperature and ambient air, the ability to interact comes back."

Borguet said the researchers were not able to detect the oxygen after exposure to air, so the nanotubes may be reoxidizing at a very small level.

He also emphasized that although they are unable to detect the ammonia sticking to the SWNTs at higher temperatures, the lack of detection may be the result of using the infrared spectroscopy technique.

"There may be another technique with a higher sensitivity that can detect the presence of ammonia," Borguet said. "We can’t say there is no ammonia, but if there is, it is below our group’s detection capability."

Borguet said that this discovery of oxygen impacting the interaction of ammonia with the SWNTs could eventually be important in developing small sensors for Homeland Security.

"Ultimately, you’d like to make a chemical nose, a device that can distinguish between chemicals which might have different hazards associated with them," he said. "You’d like to be able to identify the chemicals and what type of concentration might be present.

"These finding are a step in the right direction," Borguet added. "This could be an important discovery because theorists have all been calculating using ’perfect’ nanotubes, but the experiments are not being carried out on ’perfect’ nanotubes.

"The theorists can no longer ignore that there is going to be oxygen-containing functionality when looking at the effects of these nanotubes in the future."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>