Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The presence of oxygen on carbon nanotubes enhances interaction with ammonia

12.07.2005


Discovery could help in the development of sensors against chemical threats



Single-walled carbon nanotubes (SWNTs), which could play an important role in developing sensors against chemical threats, have enhanced interaction with ammonia because of the presence of oxygen groups on the nanotubes, researchers at Temple University have discovered.

Their findings, "Sensitivity of Ammonia Interaction with Single-Walled Carbon Nanotube Bundles to the Presence of Defect Sites and Functionalities," are reported online July 8 in the Journal of the American Chemical Society.


Eric Borguet, Ph.D., associate professor of chemistry at Temple and the study’s lead author, said scientists have shown that in using nanotubes for sensors, their conductivity can be changed by the presence of ammonia.

"Theorists have tried for a long time to explain this interaction, and their calculations have typically shown that the interaction between the carbon nanotubes and ammonia is very weak, and in fact, very few ammonia molecules would stick to the nanotubes at room temperature," said Borguet.

But, he said, the theorists are studying pure nanotubes--often referred to as "perfect" nanotubes--with no oxygen.

Through the use of infrared spectroscopy, Borguet and his collaborators believe they are the first to reveal that the SWNT purification process, which introduces oxygen to the nanotubes, changes the interaction with chemical species such as ammonia.

"It is no longer pure carbon; there are oxygen-containing groups on the purified nanotubes," said Borguet. "And it is the presence of those groups that enhances the interaction between the nanotubes and the ammonia molecules at any temperature.

"We take the nanotubes and heat them up to 500 degrees Kelvin and then cool them down to 94 degrees Kelvin, and we see ammonia sticking, but as we go higher and higher in temperature, the ammonia signal is going down," said Borguet.

"One of the things that is happening as we heat to higher and higher temperatures is we are driving off the oxygen-containing functionality," added Borguet. "Once that oxygen-containing functionality is gone, ’poof,’ the ability of the ammonia to stick is gone. But if we re-expose the SWNTs to room temperature and ambient air, the ability to interact comes back."

Borguet said the researchers were not able to detect the oxygen after exposure to air, so the nanotubes may be reoxidizing at a very small level.

He also emphasized that although they are unable to detect the ammonia sticking to the SWNTs at higher temperatures, the lack of detection may be the result of using the infrared spectroscopy technique.

"There may be another technique with a higher sensitivity that can detect the presence of ammonia," Borguet said. "We can’t say there is no ammonia, but if there is, it is below our group’s detection capability."

Borguet said that this discovery of oxygen impacting the interaction of ammonia with the SWNTs could eventually be important in developing small sensors for Homeland Security.

"Ultimately, you’d like to make a chemical nose, a device that can distinguish between chemicals which might have different hazards associated with them," he said. "You’d like to be able to identify the chemicals and what type of concentration might be present.

"These finding are a step in the right direction," Borguet added. "This could be an important discovery because theorists have all been calculating using ’perfect’ nanotubes, but the experiments are not being carried out on ’perfect’ nanotubes.

"The theorists can no longer ignore that there is going to be oxygen-containing functionality when looking at the effects of these nanotubes in the future."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>