Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how tumor suppressor gene works

12.07.2005


A team of University of Minnesota researchers has discovered how a gene that suppresses the development of melanoma and other human cancers works. The study points the way to treatments based on the function of the gene. The researchers, led by Zigang Dong, director of the university’s Hormel Institute in Austin, Minn., have applied for a patent on one such treatment. The work will be published online July 10 in the journal Nature Structural & Molecular Biology.



A critical event in the development of melanoma and other human cancers is the inactivation of a gene known as "p16." Normally, p16 keeps cells from growing rapidly, a condition that sometimes leads to tumor formation. Working with mouse epidermis and cultured human melanoma and nonmelanoma cancer cells, the team found that p16 inactivates key enzymes -- called JNK 1 and JNK 2 -- in the process. The enzymes are normally activated by exposure to ultraviolet light. By shutting down the enzymes, p16 keeps them from activating a huge complex of proteins, which, when active, attaches to chromosomes and turns on many genes that promote cell growth.

The p16 gene works by producing a protein that attaches to the enzymes, preventing them from performing their function. When the researchers added the p16 protein to colonies of cancer cells in culture, it diminished the size of many colonies, wiping out some of them. It also decreased the total number of cancer cells.


The researchers have designed a very small protein that mimics the action of the natural p16 protein.

"We hope this [small protein] will have anti-cancer activity," said Dong. "We are testing it now." A patent application on the protein has been filed. Dong said he hopes to see clinical trials of this or similar treatments begin in a few years.

Zigang Dong | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>