Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how tumor suppressor gene works

12.07.2005


A team of University of Minnesota researchers has discovered how a gene that suppresses the development of melanoma and other human cancers works. The study points the way to treatments based on the function of the gene. The researchers, led by Zigang Dong, director of the university’s Hormel Institute in Austin, Minn., have applied for a patent on one such treatment. The work will be published online July 10 in the journal Nature Structural & Molecular Biology.



A critical event in the development of melanoma and other human cancers is the inactivation of a gene known as "p16." Normally, p16 keeps cells from growing rapidly, a condition that sometimes leads to tumor formation. Working with mouse epidermis and cultured human melanoma and nonmelanoma cancer cells, the team found that p16 inactivates key enzymes -- called JNK 1 and JNK 2 -- in the process. The enzymes are normally activated by exposure to ultraviolet light. By shutting down the enzymes, p16 keeps them from activating a huge complex of proteins, which, when active, attaches to chromosomes and turns on many genes that promote cell growth.

The p16 gene works by producing a protein that attaches to the enzymes, preventing them from performing their function. When the researchers added the p16 protein to colonies of cancer cells in culture, it diminished the size of many colonies, wiping out some of them. It also decreased the total number of cancer cells.


The researchers have designed a very small protein that mimics the action of the natural p16 protein.

"We hope this [small protein] will have anti-cancer activity," said Dong. "We are testing it now." A patent application on the protein has been filed. Dong said he hopes to see clinical trials of this or similar treatments begin in a few years.

Zigang Dong | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>