Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trio of plant genes prevent ’too many mouths’

08.07.2005


A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plant from wallpapering itself with too many densely clustered stomata.


Keiko Torii holds a mutated version – one that’s an inch tall and covered densely with microscopic stomata – and a normal plant of Arabidopsis, a small flowering plant that is widely used as a model organism in plant biology.
Photo credit: University of Washington



"It’s surprising that size and stomata patterning – both key to plants being able to survive on dry land – are using the same signaling components," says Jessica McAbee, a University of Washington research associate in biology. She’s one co-author of a report in the July 8 issue of Science about work with Arabidopsis, a weed-like member of the crucifer family for which scientists already have a genomic map.

Stomata are microscopic pores on the surface of plants that open to allow plants to take in carbon dioxide from the air for photosynthesis. They close when there is the danger that the plant tissue may lose too much moisture.


"Specialized cells open and close the stomata, much like opening and closing a mouth," says Keiko Torii, UW assistant professor of biology. Stomata too close together can’t operate effectively.

Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land, Torii says. Even atmospheric scientists are interested in such basic plant biology, given the enormous amount of the greenhouse gas carbon dioxide taken up by the Earth’s plants.

Scientists already believed that part of the signaling pathway for stomata production included the receptor-like protein Too Many Mouths, so called because when absent the plant makes too many stomata, or mouths.

Scientists were searching for a single stomata gene that had to be working in concert with Too Many Mouths to get an efficient distribution of stomata, Torii says. No one was considering that more than one gene could be involved, much less three, or that the genes could be serving other purposes, she says.

The UW team of four female scientists serendipitously discovered what appears to be part of the pathway that tempers the production of stomata while studying a trio of genes that code for signaling receptors required for normal plant height.

The scientists were working on a basic understanding of plant growth as part of U.S. Department of Energy and Japanese Science and Technology Agency-funded work about growing plant material, or biomass, suitable for producing fuel. By mutating all three genes – essentially putting them all out of action – the researchers got dwarf plants an inch high instead of the normal 1½ feet. Surprisingly the plants also were so densely covered with stomata that most stomata were touching each other.

These genes appear to have roles at two points in the production of stomata. First, they inhibit undifferentiated cells – those unspecialized cells that have yet to turn into specific cell types – from making too many stomata and then they repress the development of two guard cells that open and close the stomata pore.

Co-authors of the Science paper besides Torii and McAbee are lead author Elena Shpak, former research associate at the UW and starting this fall as an assistant professor at California State University, Fullerton, and Lynn Pillitteri, a UW research associate in biology.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>