Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trio of plant genes prevent ’too many mouths’

08.07.2005


A signaling pathway required for plants to grow to their normal size appears to have an unexpected dual purpose of keeping the plant from wallpapering itself with too many densely clustered stomata.


Keiko Torii holds a mutated version – one that’s an inch tall and covered densely with microscopic stomata – and a normal plant of Arabidopsis, a small flowering plant that is widely used as a model organism in plant biology.
Photo credit: University of Washington



"It’s surprising that size and stomata patterning – both key to plants being able to survive on dry land – are using the same signaling components," says Jessica McAbee, a University of Washington research associate in biology. She’s one co-author of a report in the July 8 issue of Science about work with Arabidopsis, a weed-like member of the crucifer family for which scientists already have a genomic map.

Stomata are microscopic pores on the surface of plants that open to allow plants to take in carbon dioxide from the air for photosynthesis. They close when there is the danger that the plant tissue may lose too much moisture.


"Specialized cells open and close the stomata, much like opening and closing a mouth," says Keiko Torii, UW assistant professor of biology. Stomata too close together can’t operate effectively.

Understanding the mechanisms that control stomata patterning offers insights into such questions as how plants evolved to protect themselves when they moved from water to land, Torii says. Even atmospheric scientists are interested in such basic plant biology, given the enormous amount of the greenhouse gas carbon dioxide taken up by the Earth’s plants.

Scientists already believed that part of the signaling pathway for stomata production included the receptor-like protein Too Many Mouths, so called because when absent the plant makes too many stomata, or mouths.

Scientists were searching for a single stomata gene that had to be working in concert with Too Many Mouths to get an efficient distribution of stomata, Torii says. No one was considering that more than one gene could be involved, much less three, or that the genes could be serving other purposes, she says.

The UW team of four female scientists serendipitously discovered what appears to be part of the pathway that tempers the production of stomata while studying a trio of genes that code for signaling receptors required for normal plant height.

The scientists were working on a basic understanding of plant growth as part of U.S. Department of Energy and Japanese Science and Technology Agency-funded work about growing plant material, or biomass, suitable for producing fuel. By mutating all three genes – essentially putting them all out of action – the researchers got dwarf plants an inch high instead of the normal 1½ feet. Surprisingly the plants also were so densely covered with stomata that most stomata were touching each other.

These genes appear to have roles at two points in the production of stomata. First, they inhibit undifferentiated cells – those unspecialized cells that have yet to turn into specific cell types – from making too many stomata and then they repress the development of two guard cells that open and close the stomata pore.

Co-authors of the Science paper besides Torii and McAbee are lead author Elena Shpak, former research associate at the UW and starting this fall as an assistant professor at California State University, Fullerton, and Lynn Pillitteri, a UW research associate in biology.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>