Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists reveal how Nipah virus infects cells

07.07.2005


Discovery could counteract use of deadly virus for bioterrorism



UCLA scientists have discovered how the deadly Nipah virus infiltrates human cells to cause encephalitis. Designated as a potential bioterrorism agent by the National Biodefense Research Agenda, the virus exploits a protein essential to embryonic development to enter cells and launch its attack. The online edition of Nature reports the findings July 6.

"In its natural state, the Nipah virus can be used as a potential bioterrorism agent capable of devastating an entire country’s public health and economy," said Dr. Benhur Lee, principal investigator and UCLA assistant professor of microbiology, immunology and molecular genetics. "Now that we understand how the virus operates, we can develop vaccines and drugs to block Nipah from entering the cells. This will help prevent infection and halt outbreaks before they reach epidemic proportions."


Since 1998, the Nipah virus has triggered disease outbreaks in Australia, Singapore, Malaysia and Bangladesh. Animals spread the virus to people, where it causes life-threatening respiratory and neurological diseases that kill up to 70 percent of patients – a danger level equivalent to the Ebola virus.

To infect a cell, viruses must bind to a viral-specific receptor on the cell’s surface in order to penetrate it. Lee’s team identified a cell receptor called Ephrin-B2 as the key used by the Nipah virus to unlock the cells.

Located on brain cells and cells lining the blood vessels, Ephrin-B2 is critical to nervous system development and the growth of blood vessels in human and animal embryos. Ephrin-B2 is found in humans, horses, pigs and bats, which may explain why the infection can jump so easily from one species to another.

Collaborating with the University of Pennsylvania, the UCLA team applied tools of advanced molecular biology as well as old-fashioned detective work to track down the identity of the Ephrin-B2 receptor.

The researchers created a bait: they stitched the Nipah protein to part of a human antibody, like a worm on a fishing hook. When they placed this bait on cells at risk for Nipah infection, the antibody attached to a receptor on the cell surface. When placed on Nipah-resistant cells, however, the bait did not bind to the cell.

The scientists used an instrument that sorts molecules by weight to identify Ephrin-B2 as the receptor that bound to the bait.

To confirm their findings, the UCLA team engineered a harmless virus with Nipah virus proteins embedded in its coat. The decoy virus successfully infected cells vulnerable to the Nipah virus, but could not infect Nipah-resistant cells.

In the final step, the decoy virus entered nerve cells and cells lining blood vessels by latching onto Ephrin-B2, proving that the receptor is the same doorway that the real Nipah virus enters to infect these cells.

"We now can screen for small molecules that will block viral entry via Ephrin B-2 and develop them as therapeutic drugs," said Lee. "Because pigs are particularly susceptible to Nipah infection, public health officials could use these drugs to protect the animals, pig farmers and first-line responders, like paramedics, from a Nipah virus outbreak."

In the United States, agricultural experts estimate the value of pigs alone in the hog-farming industry at $8.6 billion.

The first reported outbreak of Nipah virus in Malaysia occurred between 1998 and 1999, sickening 265 people and killing 105. Spread from bats to pigs to humans, the outbreak infected more than 200 pig farmers and killed 40 percent. Desperate to contain the outbreak, the government ordered its military to kill more than 1 million pigs, resulting in economic devastation to the country.

In Bangladesh, death rates of repeated outbreaks of Nipah virus in the past four years have risen to 70 percent, suggesting that the virus is growing more lethal.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>