Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists reveal how Nipah virus infects cells

07.07.2005


Discovery could counteract use of deadly virus for bioterrorism



UCLA scientists have discovered how the deadly Nipah virus infiltrates human cells to cause encephalitis. Designated as a potential bioterrorism agent by the National Biodefense Research Agenda, the virus exploits a protein essential to embryonic development to enter cells and launch its attack. The online edition of Nature reports the findings July 6.

"In its natural state, the Nipah virus can be used as a potential bioterrorism agent capable of devastating an entire country’s public health and economy," said Dr. Benhur Lee, principal investigator and UCLA assistant professor of microbiology, immunology and molecular genetics. "Now that we understand how the virus operates, we can develop vaccines and drugs to block Nipah from entering the cells. This will help prevent infection and halt outbreaks before they reach epidemic proportions."


Since 1998, the Nipah virus has triggered disease outbreaks in Australia, Singapore, Malaysia and Bangladesh. Animals spread the virus to people, where it causes life-threatening respiratory and neurological diseases that kill up to 70 percent of patients – a danger level equivalent to the Ebola virus.

To infect a cell, viruses must bind to a viral-specific receptor on the cell’s surface in order to penetrate it. Lee’s team identified a cell receptor called Ephrin-B2 as the key used by the Nipah virus to unlock the cells.

Located on brain cells and cells lining the blood vessels, Ephrin-B2 is critical to nervous system development and the growth of blood vessels in human and animal embryos. Ephrin-B2 is found in humans, horses, pigs and bats, which may explain why the infection can jump so easily from one species to another.

Collaborating with the University of Pennsylvania, the UCLA team applied tools of advanced molecular biology as well as old-fashioned detective work to track down the identity of the Ephrin-B2 receptor.

The researchers created a bait: they stitched the Nipah protein to part of a human antibody, like a worm on a fishing hook. When they placed this bait on cells at risk for Nipah infection, the antibody attached to a receptor on the cell surface. When placed on Nipah-resistant cells, however, the bait did not bind to the cell.

The scientists used an instrument that sorts molecules by weight to identify Ephrin-B2 as the receptor that bound to the bait.

To confirm their findings, the UCLA team engineered a harmless virus with Nipah virus proteins embedded in its coat. The decoy virus successfully infected cells vulnerable to the Nipah virus, but could not infect Nipah-resistant cells.

In the final step, the decoy virus entered nerve cells and cells lining blood vessels by latching onto Ephrin-B2, proving that the receptor is the same doorway that the real Nipah virus enters to infect these cells.

"We now can screen for small molecules that will block viral entry via Ephrin B-2 and develop them as therapeutic drugs," said Lee. "Because pigs are particularly susceptible to Nipah infection, public health officials could use these drugs to protect the animals, pig farmers and first-line responders, like paramedics, from a Nipah virus outbreak."

In the United States, agricultural experts estimate the value of pigs alone in the hog-farming industry at $8.6 billion.

The first reported outbreak of Nipah virus in Malaysia occurred between 1998 and 1999, sickening 265 people and killing 105. Spread from bats to pigs to humans, the outbreak infected more than 200 pig farmers and killed 40 percent. Desperate to contain the outbreak, the government ordered its military to kill more than 1 million pigs, resulting in economic devastation to the country.

In Bangladesh, death rates of repeated outbreaks of Nipah virus in the past four years have risen to 70 percent, suggesting that the virus is growing more lethal.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>