Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size doesn’t matter

04.07.2005


Rockefeller scientists show that microRNAs play an essential role in the development of the fruit fly

In a story reminiscent of David and Goliath, new research from Rockefeller University shows that sometimes the smallest molecules can be the most powerful. In the July 1 issue of Cell, Ulrike Gaul, Ph.D., and colleagues report that microRNAs serve very important, and very specific, functions during the early development of the fruit fly.

First discovered a few years ago, microRNAs are short strings of RNA that are made in large amounts in every cell from plant to humans. Biochemists, including co-author Thomas Tuschl, Ph.D., found that microRNAs bind to messenger RNAs, which are the blueprints for proteins, and either target them for destruction or inhibit them from making proteins. "There was a lot of beautiful biochemistry showing how microRNAs are made and processed," says Gaul, head of the Laboratory for Developmental Neurogenetics. "But we didn’t really know how important they are for the development of an organism and its function."



To solve this question, Gaul and colleagues systematically blocked each of the 46 known microRNAs that are active during early development of the fruit fly. This is difficult to do by traditional genetic means, so they inject young fly embryos with short strings of RNA that bind to the microRNAs and prevent them from finding their target messenger RNAs. The researchers found that over half of the microRNAs were not only essential for development, but also affected it in very specific ways. "Many of the fundamental processes in development are regulated by microRNAs," Gaul says, "including body patterning, morphogenesis, nervous system and muscle development. In particular, though, we found that cell survival relies very heavily on them."

Cell death in development is not uncommon. The developing embryo makes an overabundance of many cell types, like nerve cells, which it then removes later in a process of fine-tuning. In fact, the genes in flies that carry out a cell’s death sentence, Hid, Grim and Reaper, are expressed in many healthy cells, poised to do their job at a moment’s notice.

Gaul’s new research shows that it is microRNAs that stand between a cell’s survival and its death at the hands of Hid, Grim and Reaper. The microRNAs bind to the messenger RNA of the death genes and prevent their proteins from being made. But when the microRNAs are blocked, Hid, Grim and Reaper proteins are produced, causing massive cell death and killing the fly embryo.

The microRNAs that block cell death all belong to the largest microRNA family in the fruit fly. The family is made up of 13 members, which are identical in sequence at one end but different at the other. There has been some debate on whether differences at this end are important, but Gaul’s research now shows that they are central for helping the microRNAs find the right targets. "Our findings show that while similar defects are seen when the different family members are blocked, they are not identical," Gaul says. "And we find that different family members interact differently with the three death genes."

Deciding between life and death is only one of many split-second decisions that a cell may have to make. By regulating which messenger RNAs are used to make protein, microRNAs can help cells react to an event without the nucleus being involved. For example, the ending of a nerve cell can be very far away from its nucleus. Localizing and regulating messenger RNAs at the nerve endings enables the nerves to react very fast to an incoming signal, instead of every signal being transmitted to the nucleus and back.

Gaul’s lab has many more interesting microRNAs to examine, a number of which are conserved between flies and humans. The next experiments will look to further match up different microRNAs with their targets. But Gaul is also very interested in how microRNAs themselves are regulated. "We wanted to know if microRNAs were important and if they were specific, and we got those answers - they affect fundamental pathways and have a limited number of critical targets," Gaul says. "Now we want to connect the microRNAs both to their upstream regulation and to their downstream targets to see where they fit in the developmental gene networks."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>