Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size doesn’t matter

04.07.2005


Rockefeller scientists show that microRNAs play an essential role in the development of the fruit fly

In a story reminiscent of David and Goliath, new research from Rockefeller University shows that sometimes the smallest molecules can be the most powerful. In the July 1 issue of Cell, Ulrike Gaul, Ph.D., and colleagues report that microRNAs serve very important, and very specific, functions during the early development of the fruit fly.

First discovered a few years ago, microRNAs are short strings of RNA that are made in large amounts in every cell from plant to humans. Biochemists, including co-author Thomas Tuschl, Ph.D., found that microRNAs bind to messenger RNAs, which are the blueprints for proteins, and either target them for destruction or inhibit them from making proteins. "There was a lot of beautiful biochemistry showing how microRNAs are made and processed," says Gaul, head of the Laboratory for Developmental Neurogenetics. "But we didn’t really know how important they are for the development of an organism and its function."



To solve this question, Gaul and colleagues systematically blocked each of the 46 known microRNAs that are active during early development of the fruit fly. This is difficult to do by traditional genetic means, so they inject young fly embryos with short strings of RNA that bind to the microRNAs and prevent them from finding their target messenger RNAs. The researchers found that over half of the microRNAs were not only essential for development, but also affected it in very specific ways. "Many of the fundamental processes in development are regulated by microRNAs," Gaul says, "including body patterning, morphogenesis, nervous system and muscle development. In particular, though, we found that cell survival relies very heavily on them."

Cell death in development is not uncommon. The developing embryo makes an overabundance of many cell types, like nerve cells, which it then removes later in a process of fine-tuning. In fact, the genes in flies that carry out a cell’s death sentence, Hid, Grim and Reaper, are expressed in many healthy cells, poised to do their job at a moment’s notice.

Gaul’s new research shows that it is microRNAs that stand between a cell’s survival and its death at the hands of Hid, Grim and Reaper. The microRNAs bind to the messenger RNA of the death genes and prevent their proteins from being made. But when the microRNAs are blocked, Hid, Grim and Reaper proteins are produced, causing massive cell death and killing the fly embryo.

The microRNAs that block cell death all belong to the largest microRNA family in the fruit fly. The family is made up of 13 members, which are identical in sequence at one end but different at the other. There has been some debate on whether differences at this end are important, but Gaul’s research now shows that they are central for helping the microRNAs find the right targets. "Our findings show that while similar defects are seen when the different family members are blocked, they are not identical," Gaul says. "And we find that different family members interact differently with the three death genes."

Deciding between life and death is only one of many split-second decisions that a cell may have to make. By regulating which messenger RNAs are used to make protein, microRNAs can help cells react to an event without the nucleus being involved. For example, the ending of a nerve cell can be very far away from its nucleus. Localizing and regulating messenger RNAs at the nerve endings enables the nerves to react very fast to an incoming signal, instead of every signal being transmitted to the nucleus and back.

Gaul’s lab has many more interesting microRNAs to examine, a number of which are conserved between flies and humans. The next experiments will look to further match up different microRNAs with their targets. But Gaul is also very interested in how microRNAs themselves are regulated. "We wanted to know if microRNAs were important and if they were specific, and we got those answers - they affect fundamental pathways and have a limited number of critical targets," Gaul says. "Now we want to connect the microRNAs both to their upstream regulation and to their downstream targets to see where they fit in the developmental gene networks."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>