Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size doesn’t matter

04.07.2005


Rockefeller scientists show that microRNAs play an essential role in the development of the fruit fly

In a story reminiscent of David and Goliath, new research from Rockefeller University shows that sometimes the smallest molecules can be the most powerful. In the July 1 issue of Cell, Ulrike Gaul, Ph.D., and colleagues report that microRNAs serve very important, and very specific, functions during the early development of the fruit fly.

First discovered a few years ago, microRNAs are short strings of RNA that are made in large amounts in every cell from plant to humans. Biochemists, including co-author Thomas Tuschl, Ph.D., found that microRNAs bind to messenger RNAs, which are the blueprints for proteins, and either target them for destruction or inhibit them from making proteins. "There was a lot of beautiful biochemistry showing how microRNAs are made and processed," says Gaul, head of the Laboratory for Developmental Neurogenetics. "But we didn’t really know how important they are for the development of an organism and its function."



To solve this question, Gaul and colleagues systematically blocked each of the 46 known microRNAs that are active during early development of the fruit fly. This is difficult to do by traditional genetic means, so they inject young fly embryos with short strings of RNA that bind to the microRNAs and prevent them from finding their target messenger RNAs. The researchers found that over half of the microRNAs were not only essential for development, but also affected it in very specific ways. "Many of the fundamental processes in development are regulated by microRNAs," Gaul says, "including body patterning, morphogenesis, nervous system and muscle development. In particular, though, we found that cell survival relies very heavily on them."

Cell death in development is not uncommon. The developing embryo makes an overabundance of many cell types, like nerve cells, which it then removes later in a process of fine-tuning. In fact, the genes in flies that carry out a cell’s death sentence, Hid, Grim and Reaper, are expressed in many healthy cells, poised to do their job at a moment’s notice.

Gaul’s new research shows that it is microRNAs that stand between a cell’s survival and its death at the hands of Hid, Grim and Reaper. The microRNAs bind to the messenger RNA of the death genes and prevent their proteins from being made. But when the microRNAs are blocked, Hid, Grim and Reaper proteins are produced, causing massive cell death and killing the fly embryo.

The microRNAs that block cell death all belong to the largest microRNA family in the fruit fly. The family is made up of 13 members, which are identical in sequence at one end but different at the other. There has been some debate on whether differences at this end are important, but Gaul’s research now shows that they are central for helping the microRNAs find the right targets. "Our findings show that while similar defects are seen when the different family members are blocked, they are not identical," Gaul says. "And we find that different family members interact differently with the three death genes."

Deciding between life and death is only one of many split-second decisions that a cell may have to make. By regulating which messenger RNAs are used to make protein, microRNAs can help cells react to an event without the nucleus being involved. For example, the ending of a nerve cell can be very far away from its nucleus. Localizing and regulating messenger RNAs at the nerve endings enables the nerves to react very fast to an incoming signal, instead of every signal being transmitted to the nucleus and back.

Gaul’s lab has many more interesting microRNAs to examine, a number of which are conserved between flies and humans. The next experiments will look to further match up different microRNAs with their targets. But Gaul is also very interested in how microRNAs themselves are regulated. "We wanted to know if microRNAs were important and if they were specific, and we got those answers - they affect fundamental pathways and have a limited number of critical targets," Gaul says. "Now we want to connect the microRNAs both to their upstream regulation and to their downstream targets to see where they fit in the developmental gene networks."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>