Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size doesn’t matter

04.07.2005


Rockefeller scientists show that microRNAs play an essential role in the development of the fruit fly

In a story reminiscent of David and Goliath, new research from Rockefeller University shows that sometimes the smallest molecules can be the most powerful. In the July 1 issue of Cell, Ulrike Gaul, Ph.D., and colleagues report that microRNAs serve very important, and very specific, functions during the early development of the fruit fly.

First discovered a few years ago, microRNAs are short strings of RNA that are made in large amounts in every cell from plant to humans. Biochemists, including co-author Thomas Tuschl, Ph.D., found that microRNAs bind to messenger RNAs, which are the blueprints for proteins, and either target them for destruction or inhibit them from making proteins. "There was a lot of beautiful biochemistry showing how microRNAs are made and processed," says Gaul, head of the Laboratory for Developmental Neurogenetics. "But we didn’t really know how important they are for the development of an organism and its function."



To solve this question, Gaul and colleagues systematically blocked each of the 46 known microRNAs that are active during early development of the fruit fly. This is difficult to do by traditional genetic means, so they inject young fly embryos with short strings of RNA that bind to the microRNAs and prevent them from finding their target messenger RNAs. The researchers found that over half of the microRNAs were not only essential for development, but also affected it in very specific ways. "Many of the fundamental processes in development are regulated by microRNAs," Gaul says, "including body patterning, morphogenesis, nervous system and muscle development. In particular, though, we found that cell survival relies very heavily on them."

Cell death in development is not uncommon. The developing embryo makes an overabundance of many cell types, like nerve cells, which it then removes later in a process of fine-tuning. In fact, the genes in flies that carry out a cell’s death sentence, Hid, Grim and Reaper, are expressed in many healthy cells, poised to do their job at a moment’s notice.

Gaul’s new research shows that it is microRNAs that stand between a cell’s survival and its death at the hands of Hid, Grim and Reaper. The microRNAs bind to the messenger RNA of the death genes and prevent their proteins from being made. But when the microRNAs are blocked, Hid, Grim and Reaper proteins are produced, causing massive cell death and killing the fly embryo.

The microRNAs that block cell death all belong to the largest microRNA family in the fruit fly. The family is made up of 13 members, which are identical in sequence at one end but different at the other. There has been some debate on whether differences at this end are important, but Gaul’s research now shows that they are central for helping the microRNAs find the right targets. "Our findings show that while similar defects are seen when the different family members are blocked, they are not identical," Gaul says. "And we find that different family members interact differently with the three death genes."

Deciding between life and death is only one of many split-second decisions that a cell may have to make. By regulating which messenger RNAs are used to make protein, microRNAs can help cells react to an event without the nucleus being involved. For example, the ending of a nerve cell can be very far away from its nucleus. Localizing and regulating messenger RNAs at the nerve endings enables the nerves to react very fast to an incoming signal, instead of every signal being transmitted to the nucleus and back.

Gaul’s lab has many more interesting microRNAs to examine, a number of which are conserved between flies and humans. The next experiments will look to further match up different microRNAs with their targets. But Gaul is also very interested in how microRNAs themselves are regulated. "We wanted to know if microRNAs were important and if they were specific, and we got those answers - they affect fundamental pathways and have a limited number of critical targets," Gaul says. "Now we want to connect the microRNAs both to their upstream regulation and to their downstream targets to see where they fit in the developmental gene networks."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>