Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA scans reveal possible location of lung cancer genes

01.07.2005


With equipment designed to probe the smallest segments of the genetic code, researchers at Dana-Farber Cancer Institute and collaborating institutions have found something much larger: sections of the chromosomes of lung cancer cells where cancer-related genes may lurk.



In a study in the July 1 issue of the journal Cancer Research, the researchers used single nucleotide polymorphism (SNP) array technology, which focuses on the building blocks of individual genes, to identify regions of chromosomes where genes were either left out or multiplied over and over – mistakes that are often associated with cancer. In this effort, SNP (pronounced "snip") arrays have been used to find gene-copy errors in lung cancer cells.

"In a previous study, we showed that SNP arrays offer a unique way of locating copy-number changes in cell chromosomes and of determining when genes on a pair of chromosomes are mismatched," says the study’s senior author, Matthew Meyerson, MD, PhD, of Dana-Farber. "The current study demonstrates that high-resolution SNP technology is powerful enough to identify copy-number alterations that previously hadn’t been found in lung cancer cells."


Working with 70 specimens of lung cancer tissue and 31 laboratory-grown lines of lung cancer cells, the investigators used high-resolution machinery to scan the cells’ chromosomes in 115,000 locations. They found several areas that had already been identified as having copy-number errors, plus five new ones –– two where genes had been deleted, and three where they had been highly over-copied.

The next step will be to identify the specific genes involved in these alterations. That, in turn, could lead to new diagnostic tests and treatments for lung cancer, by far the most common form of cancer in the United States, and one of the most difficult to treat.

There is increasing evidence that therapies aimed at specific gene abnormalities can be effective in treating cancer. Last year, for example, Meyerson and colleagues demonstrated that the drug Iressa shrank tumors in patients with the most common form of lung cancer who carry an abnormality, or mutation, in a single gene.

Meyerson, who is also an associated professor of pathology at Harvard Medical School, points out that the presence of copy-number changes doesn’t guarantee that genes in the identified regions are involved in cancer. "We’ll need to characterize the genes in these regions in detail to understand their role and whether they are cancer-causing or cancer-preventing genes," he remarks.

Co-author of the study are: Barbara Weir, PhD, Thomas LaFramboise, MD, Ming Lin, Rameen Beroukhim, MD, PhD, Levi Garraway, MD, PhD, Javad Beheshti, MD, Jeffrey Lee, Pasi Janne, MD, PhD, Cheng Li, PhD, and William Sellers, MD, of Dana-Farber; Katsuhiko Naoki, MD, PhD, of Yokohama Municipal Citizen’s Hospital in Yokohama, Japan; William Richards, PhD, David Sugarbaker, MD, Fei Chen, and Mark Rubin, MD, of Brigham and Women’s Hospital; Luc Girard, PhD, and John Minna, MD, of the University of Texas Southwestern Medical Center in Dallas; and David Christiani, MD, of the Harvard School of Public Health.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>