Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU scientists develop new theory about human genome evolution by tracking ’stealth’ DNA elements

01.07.2005


A group of LSU researchers, led by biological sciences Professor Mark Batzer, have unraveled the details of a 25-million-year-old evolutionary process in the human genome. Their study focused on the origin and spread of transposable elements in the genome, many of which are known to be related to certain genetic disorders, such as hemophilia.

"Effectively, we’ve devised a theory that allows us to explain the origin of about half of all of the human genome," said Batzer.

Batzer was the principal investigator on the study, while LSU biological sciences graduate students Kyudong Han and Jinchuan Xing were the co-authors of the Genome Research paper on the discoveries. Other contributors to the research included graduate students Hui Wang and Dale Hedges, along with postdoctoral fellows Randall Garber and Richard Cordaux. Their findings were recently published in the journal Genome Research.



Batzer, the George C. Kent Professor of Life Sciences in the Department of Biological Sciences at LSU, and his group found that specific DNA sequences that appear to be in an inactive state for long periods of time may not be simply lying dormant after all. Instead, Batzer and his team have discovered that these elements played a crucial role in human evolution by secretly spawning hyperactive copies, giving rise to the most abundant family of transposable elements in the human genome, known as Alu elements. The study provides the first strong evidence for the evolution of Alu elements to date.

Alu elements are short DNA sequences capable of copying themselves, mobilizing through an RNA intermediate and inserting into another location in the genome. Over evolutionary time, this activity, known as "retrotransposition," has led to the generation of more than one million copies of Alu elements in the human genome, making them the most abundant type of sequence present. Because Alu elements are so abundant, comprising approximately 10 percent of the total human genome, they have been thoroughly examined and characterized in terms of their origin and sequence composition. What has remained elusive to scientists, however, is how these elements persist and propagate over time and influence human evolution. In an attempt to understand this process, Batzer and his colleagues examined a sub-family of Alu elements in the human genome known as the AluYb lineage, and compared these elements to those in the genomes of other primate species, including chimpanzees, bonobos, gorillas, orangutans, gibbons and siamangs. The AluYb sub-family accounts for approximately 40 percent of all human-specific Alu elements and is currently one of the most active Alu lineages in the human genome. Some AluYb elements are still actively mobilizing in the human genome, causing insertion mutations that have led to the development of a number of inherited diseases.

"These elements have contributed quite a bit to the diversity of human and non-human primate genomes, so it is very important to understand their origin and spread," said Batzer. "They cause about half a percent of all human genetic disorders."

According to Batzer, some of the genetic disorders related to these elements include hemophilia and some cancers. These disorders are caused by insertional mutation or by recombination between these elements, which is when elements that are near each other undergo a "recombination" and part of the genome is deleted in the process.

Batzer’s team demonstrated that the AluYb linage dates back approximately 18-25 million years. Their results also indicated that the AluYb sub-family underwent a major species-specific expansion in the human genome during the past 3-4 million years. This apparent 20-million-year stretch of general inactivity, followed by a sudden outburst of human-specific retrotransposition activity in the past few million years, led Batzer and colleagues to formulate a new theory for the evolution of Alu elements, termed the "stealth driver" model. In the "stealth driver" model, low-activity Alu elements are maintained in low-copy number for long periods of time and occasionally produce short-lived hyperactive progeny that contribute to the formation and expansion of Alu elements in the human genome.

Batzer explained that the exact purpose or function of these elements is still debated, but understanding their basic behavior and history could be crucial to finding answers in the future.

"Mobile elements make up a huge proportion of the human genome and understanding how these elements spread through the genome and how they contribute to genetic diversity is critical," said Batzer. "This research provides a fundamental insight into their spread and it has changed our opinion about what it takes to successfully spread through the genome."

For more information on the research, contact Batzer at 225-578-7102 or mbatzer@lsu.edu. More information can also found on the Batzer Laboratory Web site at batzerlab.lsu.edu.

The Web site for Genome Research is www.genome.org. Genome Research is an international, monthly, peer-reviewed journal published by Cold Spring Harbor Laboratory Press.

It is one of the five most highly cited primary research journals in genetics and genomics.

Rob Anderson | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>