Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT Southwestern researchers discover master switch in cell death


Researchers at UT Southwestern Medical Center have found an enzyme vital for controlling the early stages of cell death - a beneficial and normal process when it works right, but malignant in a variety of cancers when it malfunctions.

The researchers are now examining tissue from cancer patients to try to determine how mutations in the enzyme’s gene may relate to cancer. "We think this gene will really be a hot spot in research," said Dr. Qing Zhong, postdoctoral researcher in biochemistry at UT Southwestern and lead author of a paper to be published in the July 1 issue of the journal Cell.

The life and death of cells is a complex avalanche of reactions, controlled by a few molecules that sit atop a biochemical "pyramid."

The newly discovered enzyme, which the researchers have named Mule, destroys a key molecule at the top of the pyramid, thus leading to the cascading disintegration of the cell. Their findings also suggest a new drug target for controlling tumor formation.

Dr. Xiaodong Wang, professor of biochemistry at UT Southwestern and a researcher with the Howard Hughes Medical Institute, said the discovery of Mule will open up a whole field of research to study the enzyme’s role in normal cell death and cancer.

"We think these findings are very significant," said Dr. Wang, senior author of the Cell study. "This is the first enzymatic step that regulates the degradation of proteins that control cell death."

The beneficial side of cell death - known as apoptosis - occurs when it kills cells at appropriate times, as is the case, for example, when it removes the webbing from the fingers of an embryo or shapes a developing brain. But the darker side of this complex process manifests itself in cancers when cells don’t die when they’re supposed to.

The key to the researchers’ finding was the interaction between the Mule enzyme and a major player in cell death, the protein Mcl-1. Dr. Wang said that while there are many possible routes a cell may take toward apoptosis, this interaction serves as one of the "master switches" controlling whether or not those other pathways are triggered.

Normally, Mcl-1 keeps cells alive by protecting them against apoptosis. For a cell to die, Mcl-1 has to be disabled. "It’s just like a guardian," Dr. Zhong said.

A healthy organism needs just the right amount of Mcl-1. Too little Mcl-1 can lead to a damaged immune system or even death. Too much, and cells stay alive when they shouldn’t, leading to cancers such as lymphomas.

Using human cell extracts, the researchers found that Mule caused a protein called ubiquitin to bind to several sites on Mcl-1. When ubiquitin binds to a molecule, it serves as a flag for that molecule to be destroyed.

"If you have too much Mule in a cell, Mcl-1 will degrade tremendously," Dr. Zhong said.

The search for Mule took more than two years, as the UT Southwestern researchers specifically searched for an enzyme that controls Mcl-1.

The interaction between Mule and Mcl-1 might someday be manipulated to help cancer patients, Dr. Wang said. For instance, a tumor may contain cells with a deficit of Mule, making the tumor more likely to grow and perhaps be resistant to chemotherapy. Treatment might then focus on the biochemistry of Mule and Mcl-1, he said.

"We might be able to see if there’s a problem with Mule, or perhaps we could screen beforehand," Dr. Wang said.

Other UT Southwestern researchers involved in the study were Wenhua Gao, student research assistant, and Dr. Fenghe Du, research specialist.

The work was supported by the Howard Hughes Medical Institute, the National Institutes of Health and The Welch Foundation.

Aline McKenzie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>