Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Female Butterflies Go for Sparkle -- Not Size -- When Choosing to Mate

29.06.2005


Size doesn’t matter, at least not the size of the eyespots on a male butterfly’s wings when female butterflies consider potential mates.



Instead, females are attracted to the "sparkle" created by the ultraviolet reflectivity of the pupils, the white circles at the center of eyespots, according to new research from University at Buffalo biologists.

The research, to be published online June 29 in Proceedings of the Royal Society B: Biological Sciences, overturns previous work indicating that larger eyespots might be considered more desirable by female butterflies.


The purpose of the research was to explore some of the evolutionary reasons behind butterfly wing patterns in the African satyrid butterfly, Bicyclus anynana.

The findings were surprising in the context of the natural world, where dramatic colors and physical features often win the sexual-selection game, according to the UB researchers.

"This is one of the first studies to show that such a small pattern element really matters in female choice," said Antonia Monteiro, Ph.D. a co-author on the paper and UB assistant professor of biological sciences.

"We always think of something huge or ornamental as determining sexual choice," noted Kendra Robertson, co-author, who recently received her master’s degree from the Department of Biological Sciences in the UB College of Arts and Sciences.

In a series of carefully controlled tests on both the dorsal and ventral sides of wings, Robertson induced a dozen subtle variations in the eyespot size and pattern of males and then studied how they influenced female’s mating decisions.

"It’s very easy to change the size, color composition and shape of these patterns, using artificial selection," said Monteiro. "The question then becomes, ’Why do these populations remain unchanged?’ What are the selective forces that maintain these patterns constant through time in any one species in nature?"

In this butterfly species, females make the ultimate decision about whether to mate.

The UB researchers altered wing-pattern elements through carefully painting the wings or by pairing males displaying traits of different size and color. They then tested female preference for wing size, eyespot size, quantity of eyespots on the wing, eyespot and pupil color, and pupil reflectivity.

"Once we found a trait that appeared to be important, we then would exaggerate it or reduce it to pin it down," said Monteiro.

None of the variations induced on the ventral side appeared to have any affect on the females’ mating decisions, leading the researchers to conclude that the ventral side of the wing does not play a role in the decision making.

But when the researchers painted the white pupil on the dorsal side with black paint, thereby eliminating the pupil, these males were much less desirable to females by a ratio of two to one, demonstrating clearly that females preferred the presence of the white pupil.

However, a large white pupil, about twice the diameter of a natural pupil, also was not found desirable by females, indicating strong sensitivity to a set of rather narrowly defined features, such as eyespot pupils that measure approximately half of one millimeter.

The most conclusive finding resulted when the researchers painted the white pupils in male eyespots on the dorsal side with a plant extract, rutin, which maintained the pupils’ whiteness, but eliminated their ultraviolet reflectivity.

"When there was no UV reflectivity, which butterflies can see, females registered a strong distaste," said Monteiro. "Selection against the absence of UV reflectivity was as strong as selection against the absence of a pupil altogether."

The reasons for this phenomenon are complex, but Robertson noted that the UV reflectivity may be important in what is known as photic stimulation -- a flashing light effect -- during the series of events that lead up to mating.

"When the male approaches the female, he opens and closes his wings in rapid succession so she can observe his pupils," she explained. "We believe the purpose of the fluttering of his wings is two-fold: to spread pheromones to her antennae and to stimulate her visually. The female appears to be very sensitive to this rapid flickering, which probably looks to her like a strobe-light effect."

Robertson added that while these conclusions are applicable only to this particular species of butterfly, other species of related butterflies feature much broader UV reflective patterns on their wings in the form of blue or violet bands of coloration.

"Our assumption is that they are there for sexual selection purposes as well," she said, "but we still don’t know what causes the change from a female’s preference for relatively small pupils in this species to the likely female preference for much larger UV-reflective patterns in these other species."

Monteiro says her next step is to study the role of eyespots in male mate choice, since females also display them and it is not clear who actually has a chance to observe them, since the female butterfly usually hides them at rest.

The research was funded by the National Science Foundation.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>