Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome study of beneficial microbe may help boost plant health

28.06.2005


In a study expected to greatly benefit crop plants, scientists have deciphered the genome of a root- and seed-dwelling bacterium that protects plants from diseases.

The research provides clues to better explain how the helpful microbe, Pseudomonas fluorescens Pf-5, naturally safeguards roots and seeds from infection by harmful microbes that cause plant diseases. The genome paper will be published in Nature Biotechnology and was scheduled to be posted online on June 26.

"The genome sequence has helped us identify new chemical pathways that the microbe apparently uses to create what are known as ’secondary metabolites’ – possibly including new antibiotic compounds," says Ian Paulsen. He led the sequencing at The Institute for Genomic Research (TIGR), Rockville, Md., and is the study’s first author.



The use of naturally-occurring, beneficial microbes such as P. fluorescens to control plant pathogens is called "biological control." That method is gaining momentum as a way to grow healthy plants without using synthetic fungicides. In all, about three dozen beneficial microbes are currently used as an environmentally-friendly way to fight plant diseases.

Joyce E. Loper, senior author of the genome paper and an expert on P. fluorescens Pf-5, predicts that the new genomic data will help scientists more quickly develop new ways to boost the effectiveness of beneficial microbes in fighting plant diseases.

"This genomic sequence reveals previously unknown traits of P. fluorescens that increase its potential for biological control," says Loper. She is a plant pathologist with USDA’s Agricultural Research Service (ARS) and is based at Oregon State University, Corvallis. The P. fluorescens genome was sequenced at TIGR and analyzed by scientists there and at ARS and Oregon State University, with contributions by researchers at Rutgers, Washington State University and the University of Arizona. The project was funded by a grant from the USDA’s Cooperative State Research, Education and Extension Service.

The article in Nature Biotechnology presents the first complete genome sequence of a biological control agent for combating plant diseases.

P. fluorescens Pf-5 was discovered two decades ago by Charles R. Howell, a plant pathologist with the ARS in Texas, who showed that the microbe suppressed two major cotton diseases. Since then, plant pathologists around the world have used this strain as a laboratory model to study beneficial microbes.

Paulsen says the P. fluorescens project also pioneered a new methodology. This novel approach relies on the analysis of repeated regions of the DNA sequence to help identify segments of the genome that appear to have been transferred from other microbes or viruses, known as phages, that infect bacteria.

Says Paulsen: "We found exciting evidence that P. fluorescens may have acquired new clusters of genes, called genomic islands, by means of lateral transfer from phages or other microbes."

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>