Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome study of beneficial microbe may help boost plant health

28.06.2005


In a study expected to greatly benefit crop plants, scientists have deciphered the genome of a root- and seed-dwelling bacterium that protects plants from diseases.

The research provides clues to better explain how the helpful microbe, Pseudomonas fluorescens Pf-5, naturally safeguards roots and seeds from infection by harmful microbes that cause plant diseases. The genome paper will be published in Nature Biotechnology and was scheduled to be posted online on June 26.

"The genome sequence has helped us identify new chemical pathways that the microbe apparently uses to create what are known as ’secondary metabolites’ – possibly including new antibiotic compounds," says Ian Paulsen. He led the sequencing at The Institute for Genomic Research (TIGR), Rockville, Md., and is the study’s first author.



The use of naturally-occurring, beneficial microbes such as P. fluorescens to control plant pathogens is called "biological control." That method is gaining momentum as a way to grow healthy plants without using synthetic fungicides. In all, about three dozen beneficial microbes are currently used as an environmentally-friendly way to fight plant diseases.

Joyce E. Loper, senior author of the genome paper and an expert on P. fluorescens Pf-5, predicts that the new genomic data will help scientists more quickly develop new ways to boost the effectiveness of beneficial microbes in fighting plant diseases.

"This genomic sequence reveals previously unknown traits of P. fluorescens that increase its potential for biological control," says Loper. She is a plant pathologist with USDA’s Agricultural Research Service (ARS) and is based at Oregon State University, Corvallis. The P. fluorescens genome was sequenced at TIGR and analyzed by scientists there and at ARS and Oregon State University, with contributions by researchers at Rutgers, Washington State University and the University of Arizona. The project was funded by a grant from the USDA’s Cooperative State Research, Education and Extension Service.

The article in Nature Biotechnology presents the first complete genome sequence of a biological control agent for combating plant diseases.

P. fluorescens Pf-5 was discovered two decades ago by Charles R. Howell, a plant pathologist with the ARS in Texas, who showed that the microbe suppressed two major cotton diseases. Since then, plant pathologists around the world have used this strain as a laboratory model to study beneficial microbes.

Paulsen says the P. fluorescens project also pioneered a new methodology. This novel approach relies on the analysis of repeated regions of the DNA sequence to help identify segments of the genome that appear to have been transferred from other microbes or viruses, known as phages, that infect bacteria.

Says Paulsen: "We found exciting evidence that P. fluorescens may have acquired new clusters of genes, called genomic islands, by means of lateral transfer from phages or other microbes."

Robert Koenig | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>