Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover receptor pathway for C-reactive protein and its effects

24.06.2005


For the first time, scientists have discovered how C-reactive protein, or CRP, is able to access endothelial cells. The UC Davis researchers’ findings will be published in the July issue of Arteriosclerosis, Thrombosis, and Vascular Biology, one of the American Heart Association’s leading journals.



CRP is a known risk marker for heart disease and, in a study published earlier this year, UC Davis researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce CRP, which is increased 100-fold when cytokines are secreted by human macrophages, a key finding that helps to explain how plaque formation is initiated.

Devaraj and Jialal have now discovered how CRP affects endothelial cells, cells that line the cerebral and coronary arteries, and promotes plaque rupture, leading to heart attacks and strokes. CRP appears to bind to a family of immunoglobulin-processing receptors known as Fc-gamma receptors.


"In this study we convincingly show that CRP binds to two members of the Fc-gamma receptor family, CD64 and CD32, and that by blocking these receptors with specific antibodies, we can reverse the detrimental effects of CRP on endothelial cells," said Jialal, the Robert E. Stowell Chair of Experimental Pathology and director of the Laboratory of Atherosclerosis and Metabolic Research at UC Davis Medical Center.

"This is the first time that anyone has shown how CRP is able to get into the human aortic endothelial cells. Fc-gamma receptors CD32 and CD64 are the culprits," said Sridevi Devaraj, associate professor of pathology at UC Davis School of Medicine and Medical Center.

Work at UC Davis and other institutions has shown that CRP induces endothelial cell dysfunction, thus promoting plaque rupture. CRP causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed, in a previous study, that CRP induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces CRP.

"In future studies, we will examine the precise pathways by which these receptors are able to mediate CRP effects so that more specific therapies can be developed to target inflammation," said Jialal.

Coronary heart disease is the nation’s single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

Reducing the concentration of CRP with drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure with angiotensin receptor blockers and diabetes with thiazolidinediones and metformin are also shown to reduce the levels of CRP.

Kelly Gastman | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>