Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis researchers discover receptor pathway for C-reactive protein and its effects

24.06.2005


For the first time, scientists have discovered how C-reactive protein, or CRP, is able to access endothelial cells. The UC Davis researchers’ findings will be published in the July issue of Arteriosclerosis, Thrombosis, and Vascular Biology, one of the American Heart Association’s leading journals.



CRP is a known risk marker for heart disease and, in a study published earlier this year, UC Davis researchers Ishwarlal Jialal and Sridevi Devaraj found that endothelial cells also produce CRP, which is increased 100-fold when cytokines are secreted by human macrophages, a key finding that helps to explain how plaque formation is initiated.

Devaraj and Jialal have now discovered how CRP affects endothelial cells, cells that line the cerebral and coronary arteries, and promotes plaque rupture, leading to heart attacks and strokes. CRP appears to bind to a family of immunoglobulin-processing receptors known as Fc-gamma receptors.


"In this study we convincingly show that CRP binds to two members of the Fc-gamma receptor family, CD64 and CD32, and that by blocking these receptors with specific antibodies, we can reverse the detrimental effects of CRP on endothelial cells," said Jialal, the Robert E. Stowell Chair of Experimental Pathology and director of the Laboratory of Atherosclerosis and Metabolic Research at UC Davis Medical Center.

"This is the first time that anyone has shown how CRP is able to get into the human aortic endothelial cells. Fc-gamma receptors CD32 and CD64 are the culprits," said Sridevi Devaraj, associate professor of pathology at UC Davis School of Medicine and Medical Center.

Work at UC Davis and other institutions has shown that CRP induces endothelial cell dysfunction, thus promoting plaque rupture. CRP causes endothelial cells to produce less nitric oxide and to increase the number of cell adhesion molecules. This, in turn, allows damaging leukocytes to enter the vessels. Devaraj and Jialal also showed, in a previous study, that CRP induces endothelial cells to produce plasminogen activator inhibitor, or PAI-1, which promotes clot formation. In addition, recent studies suggest that plaque tissue also produces CRP.

"In future studies, we will examine the precise pathways by which these receptors are able to mediate CRP effects so that more specific therapies can be developed to target inflammation," said Jialal.

Coronary heart disease is the nation’s single leading cause of death. According to the American Heart Association, approximately 1.2 million Americans will have a coronary attack this year. Almost a half million of these people will die. About 7.1 million Americans have survived a heart attack. And another 6.4 million Americans have experienced chest pain or discomfort due to reduced blood supply to the heart.

Reducing the concentration of CRP with drugs, such as statins, has been shown to reduce cardiovascular events. Treating other risk factors such as smoking, obesity, high blood pressure with angiotensin receptor blockers and diabetes with thiazolidinediones and metformin are also shown to reduce the levels of CRP.

Kelly Gastman | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>