Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A protein in the eye may prevent immune response and protect eyes from disease

22.06.2005


Scientists at The Schepens Eye Research Institute have discovered that a protein known as F4/80 found on immune cells in the eye and other parts of the body may have a function in the regulation of the body’s immune response and protect delicate tissues that cannot survive the "inflammation" inherent in full-blown immunity.



"We believe that this discovery may ultimately help in the development of therapies for blinding eye diseases such as macular degeneration and autoimmune diseases that occur when the immune system goes awry," says Joan Stein-Sreilein, PhD, senior author of the study published in the May issue of the Journal of Experimental Medicine and senior scientist at The Schepens Eye Research Institute.

According to Stein-Streilein, the discovery is another piece of the "immune privilege" puzzle. Certain parts of the body, including the eyes, brain, gastrointestinal system and reproductive system have the ability to prevent the usual immune response onset when confronted with foreign invaders such as bacteria. Without this special reaction, the eye’s delicate tissue would be destroyed by inflammation and the gastrointestinal tract could not tolerate the ingestion of food. The F4/80 molecule (also known as a glycoprotein) was first discovered two decades ago on immune cells in the eye, gut and other privileged sites, but its function has not been understood.


In an attempt to understand F4/80, Stein-Streilein and her team have been following the immune cells (also known as antigen presenting cells) containing the protein. In previous studies, the team found that when these F4/80 containing cells bring antigens (foreign substances) from the eye to the spleen, the spleen stimulates the production of what is known as a "regulatory" T cell which stops the immune response throughout the body as well as at the site where the invasion took place--in this case, the eye. In a full-blown immune response, other types of T Cells are stimulated that start the immune attack, inflammation, and tissue destruction.

Since the F4/80 protein was identified as a crucial player in the development of immune privilege, the Schepens’ team postulated that the protein had an important role in immune regulation. In the current JEM study, the team investigated mice that did not produce F4/80. They found that the immune suppression did not occur when foreign substances were presented to the spleen by antigen presenting cells that did not have F4/80. "This led us to believe that the protein F4/80 had a direct role in stopping immune response," says Stein-Streilein.

Although the mechanism by which F4/80 stimulates the production of immune suppressing T Cells is unknown, the team believes that the protein may be involved in cell-cell communications.

The presence of F4/80 cells in other immune privileged sites, such as the brain and placenta, and its exclusion from T cell zones in the spleen suggests that F4/80 expression and immune activation may be mutually exclusive.

According to Stein-Streilein, the next steps for the group will be to tease out exactly how the protein accomplishes its goal. Ultimately knowledge of the F4/80 protein and its role in immune regulation may lead to novel therapies for autoimmune diseases of the eye and the body.

Patti Jacobs | EurekAlert!
Further information:
http://www.jem.org
http://www.eri.harvard.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>