Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising new TB drug enters clinical trial

15.06.2005


A promising new drug candidate that may be effective against both actively dividing and slow-growing Mycobacterium tuberculosis (M. tb) has begun testing in humans, the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, announced today. The novel antibiotic, PA-824, may shorten the time needed to treat tuberculosis (TB), a contagious disease that claims approximately two million lives worldwide each year. In partnership with the non-profit New York-based Global Alliance for TB Drug Development (TB Alliance), NIAID contributed to the drug candidate’s preclinical safety and efficacy testing in animal models. Now, a clinical trial to assess PA-824’s safety, sponsored by the TB Alliance, has opened at a medical clinic in Lincoln, NE.

"The rapid movement of PA-824 through the development pipeline is a testament to the successful partnership between NIAID and the TB Alliance. It marks a significant milestone in progress toward our goal of making treatments for TB more effective and shorter in duration," notes NIAID Director Anthony S. Fauci, M.D.

One-third of the global population--some two billion people--is infected with M. tb. A person may remain latently infected and harbor the bacteria, in a non-growing or slow-growing form, for decades with no symptoms. However, if the immune system is weakened by age, HIV or other infections, M. tb may be re-activated and the active form of the disease may emerge. Although most common in other countries where HIV prevalence is highest, approximately 14,000 cases of active TB are reported to the Centers for Disease Control and Prevention each year in the United States.



While TB is curable with antibiotics, the drug regimen is arduous and lengthy. The World Health Organization’s current recommendation for treatment of active TB includes the administration of up to 4 drugs for at least 6 months. PA-824 differs from most currently available TB drugs because it appears to attack M. tb in both the bacterium’s actively dividing and slow-growing stages. For this reason, researchers hope PA-824 will significantly reduce the time needed to cure TB.

In 2000, C. Kendall Stover, Ph.D., of Pathogenesis Corporation, and his co-authors, including NIAID scientist Clifton E. Barry, III, Ph.D., published the first evidence of PA-824’s potential TB-fighting abilities. In 2002, the TB Alliance acquired exclusive worldwide rights to PA-824 from the California-based biotechnology firm, Chiron Corporation.

NIAID provided support to the TB Alliance for continued development of PA-824 through the Institute’s Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) (www.taacf.org). TAACF, established by NIAID in 1994, conducts prescreening and efficacy testing of potential anti-TB drugs at no cost to those who submit the compounds.

For PA-824 development, NIAID support included

  • A contract awarded to Doris Rouse, Ph.D., of RTI International in Research Triangle Park, NC, that provided technology transfer assistance and project management of preclinical testing of the compound
  • A contract to Ian Orme, Ph.D., of Colorado State University that confirmed the efficacy of the compound in animal models of TB infection

"Several characteristics of PA-824 that emerged during preclinical testing give us reason to be optimistic about its possible effectiveness against TB in humans," says Dr. Barbara Laughon, Ph.D., chief of the Complications and Co-infections Branch of NIAID’s Division of AIDS. In addition to activity against both actively dividing and slow-growing M. tb, PA-824 also shows evidence of being active against both drug-sensitive and multi-drug-resistant TB. Also, in animal testing, single doses of the compound administered orally traveled rapidly to such target organs as the lung and spleen. With support from both the TB Alliance and NIAID, Jacques Grosset, M.D., and William Bishai, M.D., Ph.D., of The Johns Hopkins University in Baltimore, found PA-824 to have bacterial killing effects similar to frontline TB drugs isoniazid and rifampin in animal models of infection. Finally, PA-824’s apparent lack of interaction with certain liver enzymes means it may be safe for use by people co-infected by HIV and TB. Currently, such individuals may experience adverse effects when taking both rifampin (to treat TB) and antiretroviral drugs (to treat HIV).

"The announcement that a novel TB drug candidate has entered human trials is cause for celebration in the TB community. It underscores the value of public-private partnerships and the crucial role of NIAID’s TB drug development contract mechanism in preparing PA-824 for this stage," says Dr. Laughon.

Adds Maria C. Freire, Ph.D, president and chief executive officer of the TB Alliance, "We worked creatively and smartly with our partners, donors and contractors, combining our ability to move the technology forward with the expert management of RTI International and all of NIAID’s contributions. The result is that a promising TB compound moved into human trials in near-record time."

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>