Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene controlling circadian rhythms linked to drug addiction

14.06.2005


The gene that regulates the body’s main biological clocks also may play a pivotal role in drug addiction, researchers at UT Southwestern Medical Center have found.



The Clock gene not only controls the body’s circadian rhythms, including sleep and wakefulness, body temperature, hormone levels, blood pressure and heart activity, it may also be a key regulator of the brain’s reward system.

UT Southwestern researchers showed that, in mice, the Clock gene regulates the reward response to cocaine, suggesting that similar actions take place in humans. Findings from the multi-center study are available online in the Proceedings of the National Academy of Sciences. "We found that the Clock gene is not only involved in regulating sleep/wake cycles, but is also very involved in regulating the rewarding responses to drugs of abuse," said Dr. Colleen A. McClung, assistant instructor of psychiatry at UT Southwestern and the study’s lead author. "It does so through its actions on dopamine pathways."


Dopamine is a neurotransmitter associated with the "pleasure system" of the brain, providing feelings of enjoyment from certain activities. Dopamine is released by naturally rewarding experiences such as food, sex and the use of certain drugs.

In the study, mice that lacked the Clock gene were injected with cocaine. Not only did the mice experience problems with their circadian cycles – not sleeping as much and becoming more hyperactive – they also found cocaine more rewarding than control mice, demonstrated by their strong preference for the location where the drug was administered.

In addition, Clock-deficient mice produced more dopamine than control mice did, suggesting that the gene controlling circadian rhythms is a key regulator of the brain’s reward system and may influence the addictive properties of drugs such as cocaine.

"We tracked dopamine cells in the mice brains and found that these cells fired more rapidly and showed a pattern called bursting, which leads to an usually large dopamine release," Dr. McClung said. "We also found that more dopamine is produced and released in these mice under normal conditions and particularly after exposure to cocaine."

Dr. Eric Nestler, chairman of psychiatry at UT Southwestern and the study’s senior author, said the results suggest there may be a link in disruption of circadian rhythms and the tendency to abuse drugs.

"Most work on Clock has focused on the brain’s master pacemaker, located in a brain area called the suprachiasmatic nucleus," said Dr. Nestler. "The novelty of Dr. McClung’s findings is the role Clock plays in brain reward pathways. The next step is to examine Clock and related genes in human addicts."

Donna Steph Hansard | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>