Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery suggests why stem cells run through stop signs

13.06.2005


Everyone knows that stem cells are controversial. Many people know that stem cells can grow into virtually any cell type found in the body, from a red blood cell to a muscle cell to a brain cell. But no one really knows why stem cells continue to divide and renew themselves long after the point where other cells stop dividing.



Now scientists at Northwestern University and the University of Washington offer one of the first clues as to why stem cells ignore stop signs in the cell cycle: a special molecular mechanism has cut the brakes. The researchers found that tiny bits of genetic material called microRNAs are necessary for stem cell division to take place, suggesting that microRNAs shut off the signals that stop cell division in most other cells.

The findings were published online this week by the journal Nature. In the paper, the researchers also speculate that microRNAs may play a similar role in cancer cells, encouraging their proliferation. This speculation is supported by three other new papers published this week in Nature linking microRNAs to cancer.


According to authors Richard Carthew, Owen L. Coon Professor of Molecular Biology at Northwestern University, and Hannele Ruohola-Baker, professor of biochemistry at the University of Washington, microRNAs can regulate gene expression and give stem cells a green light to pass from the normal stop phase to the stage in which they begin replicating their DNA for later division.

In their work, Carthew and Ruohola-Baker focused on fruit flies, which have approximately 80 types of microRNAs. They genetically modified stem cells from the fruit flies’ ovaries and studied how many egg chambers the mutant stem cells produced as compared to normal stem cells. The production rate in the mutant cells fell over the course of 12 days, and the researchers concluded it was because the mutant stem cells were no longer dividing.

Without the microRNAs at work, the brakes were applied to the cell division of the mutant stem cells, just like ordinary cells. The cellular brake (in this case a protein called Dacapo, a fruit fly homologue of a human tumor suppressor) kept the stem cells from proliferating.

"Determining which of the 80 microRNAs is responsible for deactivating the stop signal is the next step of our research," said Ruohola-Baker.

"The list of chores that microRNAs do within cells keeps growing in new and surprising ways," added Carthew. "This latest discovery with stem cell division makes us wonder if microRNAs also control division of other types of cells such as cancer cells."

Other authors on the Nature paper are Kenji Nakahara of Northwestern University and Karin Fischer, Steve Hatfield and Halyna Shcherbata of the University of Washington.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>