Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly infectious entity of prions discovered

13.06.2005


The mysterious, highly infectious prions, which cause the severe destruction of the brain that characterizes "mad cow disease" and several human brain degenerative disorders, can be rendered harmless in the laboratory by a slight alternation of the three-dimensional conformation or shape of the prion protein’s structure.



The discovery, which opens up new directions for researchers studying the currently untreatable prion diseases in humans and animals, is reported in this week’s Nature by Salk Institute scientist Roland Riek and colleagues, along with collaborators in France and Switzerland.

Riek and his colleagues used a fungus as a model system because its prions are easier to isolate and work with than are the prions from humans and other mammals. "It’s a fantastic system to study the structural components of prions and measure infectivity," Riek said.


"This discovery is very interesting from a basic scientific point of view because it shows that a specific conformation of the prion protein is the infectious entity, and also that we can easily destroy the prion’s infectivity by altering its shape," said Riek. "We now need to find out if this is also the case in mammalian prions."

Identified only about 25 years ago, prions are highly unusual infectious agents that sit on the outside of membranes of the cells of many organisms including the human.

So tiny that they cannot been visualized even with the most powerful microscopes, prion proteins exist in two forms in nature: a normal (non-infectious) shape and the abnormal structure that occurs in mad cow disease, scrapie, kuru and several other brain infections.

Most prion infections begin when the normal shape, for reasons unknown, spontaneously changes into the infectious form that kills brain cells. The infection is spread through a chain reaction like process that begins when the first abnormal prion "tags" a prion that has a normal conformation and forces it to adopt the abnormal prion shape. This new rogue prion joins in the game of "tag," by forcing another normal prion into the abnormal form.

Previous studies revealed that a prion’s switch from a normal to the infectious form is associated with a change in the three-dimensional folded shape, or conformation, of the prion’s protein structure. Building on research that identified the part of the prion protein that made a fungal prion infectious, Riek and colleagues discovered that this critical region forms a flat structure called a beta-sheet.

Using a genetic engineering technique called point mutation to change one at a time each amino acid component of the prion protein, the Salk scientists created a variety of different versions of the prion to determine whether the flat shape of the beta-sheet itself was necessary for a prion to be infectious.

The Salk team found that destroying the shape of the beta-sheet rendered the prion harmless. It was no longer able to spread throughout the fungal cell and "tag" other prions, causing them to become infectious.

This research opens up new directions for researchers studying prion diseases in humans and other animals, since targeting the beta-sheet shape might turn out to be a strategy for controlling the feared and untreatable brain-wasting prion diseases such as bovine spongiform encephalopathy.

The study also may help to improve our understanding of such neurodegenerative diseases as Alzheimer’s, in which brain cells gradually "silt up" with structures similar to the prion beta-sheet that are connected to brain cell death.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>