Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly infectious entity of prions discovered

13.06.2005


The mysterious, highly infectious prions, which cause the severe destruction of the brain that characterizes "mad cow disease" and several human brain degenerative disorders, can be rendered harmless in the laboratory by a slight alternation of the three-dimensional conformation or shape of the prion protein’s structure.



The discovery, which opens up new directions for researchers studying the currently untreatable prion diseases in humans and animals, is reported in this week’s Nature by Salk Institute scientist Roland Riek and colleagues, along with collaborators in France and Switzerland.

Riek and his colleagues used a fungus as a model system because its prions are easier to isolate and work with than are the prions from humans and other mammals. "It’s a fantastic system to study the structural components of prions and measure infectivity," Riek said.


"This discovery is very interesting from a basic scientific point of view because it shows that a specific conformation of the prion protein is the infectious entity, and also that we can easily destroy the prion’s infectivity by altering its shape," said Riek. "We now need to find out if this is also the case in mammalian prions."

Identified only about 25 years ago, prions are highly unusual infectious agents that sit on the outside of membranes of the cells of many organisms including the human.

So tiny that they cannot been visualized even with the most powerful microscopes, prion proteins exist in two forms in nature: a normal (non-infectious) shape and the abnormal structure that occurs in mad cow disease, scrapie, kuru and several other brain infections.

Most prion infections begin when the normal shape, for reasons unknown, spontaneously changes into the infectious form that kills brain cells. The infection is spread through a chain reaction like process that begins when the first abnormal prion "tags" a prion that has a normal conformation and forces it to adopt the abnormal prion shape. This new rogue prion joins in the game of "tag," by forcing another normal prion into the abnormal form.

Previous studies revealed that a prion’s switch from a normal to the infectious form is associated with a change in the three-dimensional folded shape, or conformation, of the prion’s protein structure. Building on research that identified the part of the prion protein that made a fungal prion infectious, Riek and colleagues discovered that this critical region forms a flat structure called a beta-sheet.

Using a genetic engineering technique called point mutation to change one at a time each amino acid component of the prion protein, the Salk scientists created a variety of different versions of the prion to determine whether the flat shape of the beta-sheet itself was necessary for a prion to be infectious.

The Salk team found that destroying the shape of the beta-sheet rendered the prion harmless. It was no longer able to spread throughout the fungal cell and "tag" other prions, causing them to become infectious.

This research opens up new directions for researchers studying prion diseases in humans and other animals, since targeting the beta-sheet shape might turn out to be a strategy for controlling the feared and untreatable brain-wasting prion diseases such as bovine spongiform encephalopathy.

The study also may help to improve our understanding of such neurodegenerative diseases as Alzheimer’s, in which brain cells gradually "silt up" with structures similar to the prion beta-sheet that are connected to brain cell death.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>