Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly infectious entity of prions discovered

13.06.2005


The mysterious, highly infectious prions, which cause the severe destruction of the brain that characterizes "mad cow disease" and several human brain degenerative disorders, can be rendered harmless in the laboratory by a slight alternation of the three-dimensional conformation or shape of the prion protein’s structure.



The discovery, which opens up new directions for researchers studying the currently untreatable prion diseases in humans and animals, is reported in this week’s Nature by Salk Institute scientist Roland Riek and colleagues, along with collaborators in France and Switzerland.

Riek and his colleagues used a fungus as a model system because its prions are easier to isolate and work with than are the prions from humans and other mammals. "It’s a fantastic system to study the structural components of prions and measure infectivity," Riek said.


"This discovery is very interesting from a basic scientific point of view because it shows that a specific conformation of the prion protein is the infectious entity, and also that we can easily destroy the prion’s infectivity by altering its shape," said Riek. "We now need to find out if this is also the case in mammalian prions."

Identified only about 25 years ago, prions are highly unusual infectious agents that sit on the outside of membranes of the cells of many organisms including the human.

So tiny that they cannot been visualized even with the most powerful microscopes, prion proteins exist in two forms in nature: a normal (non-infectious) shape and the abnormal structure that occurs in mad cow disease, scrapie, kuru and several other brain infections.

Most prion infections begin when the normal shape, for reasons unknown, spontaneously changes into the infectious form that kills brain cells. The infection is spread through a chain reaction like process that begins when the first abnormal prion "tags" a prion that has a normal conformation and forces it to adopt the abnormal prion shape. This new rogue prion joins in the game of "tag," by forcing another normal prion into the abnormal form.

Previous studies revealed that a prion’s switch from a normal to the infectious form is associated with a change in the three-dimensional folded shape, or conformation, of the prion’s protein structure. Building on research that identified the part of the prion protein that made a fungal prion infectious, Riek and colleagues discovered that this critical region forms a flat structure called a beta-sheet.

Using a genetic engineering technique called point mutation to change one at a time each amino acid component of the prion protein, the Salk scientists created a variety of different versions of the prion to determine whether the flat shape of the beta-sheet itself was necessary for a prion to be infectious.

The Salk team found that destroying the shape of the beta-sheet rendered the prion harmless. It was no longer able to spread throughout the fungal cell and "tag" other prions, causing them to become infectious.

This research opens up new directions for researchers studying prion diseases in humans and other animals, since targeting the beta-sheet shape might turn out to be a strategy for controlling the feared and untreatable brain-wasting prion diseases such as bovine spongiform encephalopathy.

The study also may help to improve our understanding of such neurodegenerative diseases as Alzheimer’s, in which brain cells gradually "silt up" with structures similar to the prion beta-sheet that are connected to brain cell death.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>