Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast Cancer Uses Growth Factors to Lure Stem Cells

08.06.2005


Like a siren song, breast cancer secretes growth factors to attract stem cells then uses those cells – which normally promote healing – to help it survive, researchers have found.



In the laboratory, the researchers have documented secretion of growth factors FGF2 and VEGF by breast cancer cells, seen these factors bind to receptors on stem cells then watched stem cells migrate toward the cancer. When they took the growth factors away, the deadly migration decreased.

“These stem cells are there to make normal tissue; they make fat, cartilage, bone,” says Dr. Adam Perry, general surgery resident at the Medical College of Georgia. “But if you have a tumor, it will in a sense mimic some tissue type to get the cells to come and help form the environment that is called the tumor stroma that it needs to get beyond a certain size. That’s really when cancer becomes clinically problematic.”


Knowing how tumors attract the stem cells they need to thrive opens up new avenues for earlier detection, better staging and more targeted therapies, he says.

Dr. Perry’s work on this fatal attraction between cancer and adult bone marrow stem cells earned him the Peter J. Gingrass, M.D. Memorial Award for the best paper presented by a medical student or non-plastic surgery resident during the recent 50th anniversary meeting of the Plastic Surgery Research Council.

“When you have a growing tumor, the tumor cells cannot stand alone,” says Dr. Edmond Ritter, MCG plastic surgeon and senior co-investigator. “Tumors have specific colon cancer or breast cancer or melanoma cells, but they also have to have supporting framework which includes fibroblasts as well as blood vessels.”

Normally, FGF2 makes connective tissue and VEGF makes blood vessels. It was known that tumors contain these growth factors as well as others and that they utilize stem cells to help build the infrastructure they need. “We wanted to figure out what attracts these stem cells,” says Dr. Perry. “What makes them move?”

“You need blood vessels. You need other tissue that forms basically a home or a nest for the tumor,” says Dr. Erhard Bieberich, MCG biochemist and senior investigator. “Without that, you don’t get metastasis. Without the activity of those stem cells, metastasis would only grow to a particular size but it would not be life-threatening. But once the body response kicks in and accepts the metastasis as some sort of useful tissue, it really gets dangerous.”

The MCG researchers hypothesized that growth factors secreted by tumors cells might play a role in this acceptance.

Dr. Bao-Ling Adam, a cancer researcher and proteomics expert, helped measure levels of FGF2 and VEGF – both proteins – using a high-tech approach that enables evaluation of hundreds of proteins at one time.

Cells need protein to survive and cells normally keep some proteins they make and shed others, Dr. Adam says. Much as a blood test can show what proteins are being secreted in the body, the researchers looked in the cell culture media where the cancer cells resided to see what proteins were being secreted.

“We wanted to see what kind of molecules are released in the media and then what molecules attract stem cells,” says Dr. Adam. They are still working to identify other molecules that were secreted, but FGF2 and VEGF were definite standouts.

“In the case of breast cancer, FGF2 and VEGF meet the criteria as candidate molecules and we believe they have an important role but are not the only answer as to why stem cells migrate,” says Dr. Ritter, who specializes in reconstruction following mastectomy.

The researchers say different kinds of tumors likely send out different growth factors to lure stem cells. In fact, they’ve already shown that melanoma also uses VEGF but not FGF2. “You don’t want to treat every tumor alike,” says Dr. Ritter.

They believe knowing the factors that help lead stem cells astray is an important first step in stopping the deadly attraction. “The first generation of chemotherapy was more targeting the cell division of cancer,” says Dr. Bieberich. “Now we are entering a new phase where we are targeting more the communication pathways.” Possibilities include using antibodies or other small molecules to block growth factor receptors or even turning the tables on cancer by arming stem cells with a mechanism to kill the cancer once they connect, he says.

Dr. Perry has seen the need for options other than chemotherapy, radiation therapy or surgery in his relatively short professional life. “What we are doing now is looking at more precise, specific ways to treat cancer on cellular level. This requires an immense understanding of tumor biology and what is going on. We are trying to chip away at that puzzle.”

Dr. Perry is just completing a year of research in the laboratories of Drs. Bieberich and Adam. He plans to pursue a plastic surgery fellowship after completing his surgery residency.

A significant part of the initial work for these studies was conducted by Kathryn Tucciarone, who worked as a research assistant in Dr. Bieberich’s lab. Dr. Jack Yu, chief of the Section of Plastic and Reconstructive Surgery, and Dr. Thomas N. Wang, surgical oncologist, also supported the studies.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>