Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast Cancer Uses Growth Factors to Lure Stem Cells

08.06.2005


Like a siren song, breast cancer secretes growth factors to attract stem cells then uses those cells – which normally promote healing – to help it survive, researchers have found.



In the laboratory, the researchers have documented secretion of growth factors FGF2 and VEGF by breast cancer cells, seen these factors bind to receptors on stem cells then watched stem cells migrate toward the cancer. When they took the growth factors away, the deadly migration decreased.

“These stem cells are there to make normal tissue; they make fat, cartilage, bone,” says Dr. Adam Perry, general surgery resident at the Medical College of Georgia. “But if you have a tumor, it will in a sense mimic some tissue type to get the cells to come and help form the environment that is called the tumor stroma that it needs to get beyond a certain size. That’s really when cancer becomes clinically problematic.”


Knowing how tumors attract the stem cells they need to thrive opens up new avenues for earlier detection, better staging and more targeted therapies, he says.

Dr. Perry’s work on this fatal attraction between cancer and adult bone marrow stem cells earned him the Peter J. Gingrass, M.D. Memorial Award for the best paper presented by a medical student or non-plastic surgery resident during the recent 50th anniversary meeting of the Plastic Surgery Research Council.

“When you have a growing tumor, the tumor cells cannot stand alone,” says Dr. Edmond Ritter, MCG plastic surgeon and senior co-investigator. “Tumors have specific colon cancer or breast cancer or melanoma cells, but they also have to have supporting framework which includes fibroblasts as well as blood vessels.”

Normally, FGF2 makes connective tissue and VEGF makes blood vessels. It was known that tumors contain these growth factors as well as others and that they utilize stem cells to help build the infrastructure they need. “We wanted to figure out what attracts these stem cells,” says Dr. Perry. “What makes them move?”

“You need blood vessels. You need other tissue that forms basically a home or a nest for the tumor,” says Dr. Erhard Bieberich, MCG biochemist and senior investigator. “Without that, you don’t get metastasis. Without the activity of those stem cells, metastasis would only grow to a particular size but it would not be life-threatening. But once the body response kicks in and accepts the metastasis as some sort of useful tissue, it really gets dangerous.”

The MCG researchers hypothesized that growth factors secreted by tumors cells might play a role in this acceptance.

Dr. Bao-Ling Adam, a cancer researcher and proteomics expert, helped measure levels of FGF2 and VEGF – both proteins – using a high-tech approach that enables evaluation of hundreds of proteins at one time.

Cells need protein to survive and cells normally keep some proteins they make and shed others, Dr. Adam says. Much as a blood test can show what proteins are being secreted in the body, the researchers looked in the cell culture media where the cancer cells resided to see what proteins were being secreted.

“We wanted to see what kind of molecules are released in the media and then what molecules attract stem cells,” says Dr. Adam. They are still working to identify other molecules that were secreted, but FGF2 and VEGF were definite standouts.

“In the case of breast cancer, FGF2 and VEGF meet the criteria as candidate molecules and we believe they have an important role but are not the only answer as to why stem cells migrate,” says Dr. Ritter, who specializes in reconstruction following mastectomy.

The researchers say different kinds of tumors likely send out different growth factors to lure stem cells. In fact, they’ve already shown that melanoma also uses VEGF but not FGF2. “You don’t want to treat every tumor alike,” says Dr. Ritter.

They believe knowing the factors that help lead stem cells astray is an important first step in stopping the deadly attraction. “The first generation of chemotherapy was more targeting the cell division of cancer,” says Dr. Bieberich. “Now we are entering a new phase where we are targeting more the communication pathways.” Possibilities include using antibodies or other small molecules to block growth factor receptors or even turning the tables on cancer by arming stem cells with a mechanism to kill the cancer once they connect, he says.

Dr. Perry has seen the need for options other than chemotherapy, radiation therapy or surgery in his relatively short professional life. “What we are doing now is looking at more precise, specific ways to treat cancer on cellular level. This requires an immense understanding of tumor biology and what is going on. We are trying to chip away at that puzzle.”

Dr. Perry is just completing a year of research in the laboratories of Drs. Bieberich and Adam. He plans to pursue a plastic surgery fellowship after completing his surgery residency.

A significant part of the initial work for these studies was conducted by Kathryn Tucciarone, who worked as a research assistant in Dr. Bieberich’s lab. Dr. Jack Yu, chief of the Section of Plastic and Reconstructive Surgery, and Dr. Thomas N. Wang, surgical oncologist, also supported the studies.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>