Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein helps regulate the genes of embryonic stem cells

25.05.2005


Findings offer new ideas on disease states



New research from University of North Carolina at Chapel Hill shows how a protein may be crucial to the regulation of genes in embryonic stem cells. The protein, called "eed," is needed for an essential chemical modification of many genes. Embryos cannot survive without the modification.

The findings appear in the May 24 issue of the journal Current Biology.


The research offers an important contribution to a new wave of thinking in genetics: that not all human disease states are due to alterations in DNA sequence. Dr. Terry Magnuson - Sarah Graham Kenan professor, chairman of genetics and director of the Carolina Center for Genome Sciences in UNC’s School of Medicine - led the research.

Researchers five decades ago worked to crack the genetic code, the nucleic acid sequence of As, Cs, Gs and Ts making up the DNA of genes. Today, Magnuson’s team is trying to unravel a different, newly appreciated mode of inheritance: epigenetics.

"Epigenetic inheritance is heritable information passed down through generations of cells that is not encoded by the DNA sequence," said Nathan D. Montgomery, a graduate student in Magnuson’s laboratory and first author of the paper.

This information is in the form of chemical modifications on any of four core histone proteins that group together to provide a molecular scaffold supporting the roughly 35,000 genes in the nucleus of every human cell. Histone modifications affect gene activity and include methylation, in which a methyl component is attached to the histone protein.

The prevailing model is that methylation on histones serves as a docking site for proteins that "read" this histone modification, and it’s those proteins that directly have an impact on gene expression - either by activating or silencing a gene.

"Diversity is determined by different types of chemical modifications and also by the number of modifications," Montgomery said. "And those modifications are the unit of epigenetic information, just as the DNA sequence is the unit of genetic information." Depending on the precise nature of the histone modification, any given gene associated with modified histones is marked to be turned on or off.

In the study, eed is the first protein shown to be required for the addition of a single methyl group to histone H3, said Montgomery. Knowing which proteins are responsible for the various histone modifications is the first step toward understanding how epigenetics influences such occurrences as cancer and birth defects, he added.

The discovery that eed is required to modify histone H3 in a unique way opens up new lines of investigation into the role eed might play in diverse biological processes.

"It may give us new gene targets to study relative to cancer and other disease states that may have these marks and have not been examined but should be," Magnuson said.

Another application of epigenetics is stem cell therapeutics, in which any specific tissue type could be derived from stem cells and used to replace damaged or diseased tissue.

Magnuson and his colleagues chose to study how eed influences genes in embryonic stem cells because they thought that would be directly applicable to stem cell technologies.

"In order to get a handle on individual stem cell therapeutics and make this application work, one has to begin to understand the epigenetics of the embryonic stem cells, and we really have very little information on that kind of technology," said Magnuson.

In addition to Magnuson and Montgomery, department of genetics authors include Della Yee, lab technician; Andrew Chen, undergraduate researcher; and Drs. Sundeep Kalantry and Stormy J. Chamberlain, postdoctoral fellows. Arie P. Otte, professor at the Swammerdam Institute for Life Sciences, Amsterdam, also contributed.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>