Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein helps regulate the genes of embryonic stem cells

25.05.2005


Findings offer new ideas on disease states



New research from University of North Carolina at Chapel Hill shows how a protein may be crucial to the regulation of genes in embryonic stem cells. The protein, called "eed," is needed for an essential chemical modification of many genes. Embryos cannot survive without the modification.

The findings appear in the May 24 issue of the journal Current Biology.


The research offers an important contribution to a new wave of thinking in genetics: that not all human disease states are due to alterations in DNA sequence. Dr. Terry Magnuson - Sarah Graham Kenan professor, chairman of genetics and director of the Carolina Center for Genome Sciences in UNC’s School of Medicine - led the research.

Researchers five decades ago worked to crack the genetic code, the nucleic acid sequence of As, Cs, Gs and Ts making up the DNA of genes. Today, Magnuson’s team is trying to unravel a different, newly appreciated mode of inheritance: epigenetics.

"Epigenetic inheritance is heritable information passed down through generations of cells that is not encoded by the DNA sequence," said Nathan D. Montgomery, a graduate student in Magnuson’s laboratory and first author of the paper.

This information is in the form of chemical modifications on any of four core histone proteins that group together to provide a molecular scaffold supporting the roughly 35,000 genes in the nucleus of every human cell. Histone modifications affect gene activity and include methylation, in which a methyl component is attached to the histone protein.

The prevailing model is that methylation on histones serves as a docking site for proteins that "read" this histone modification, and it’s those proteins that directly have an impact on gene expression - either by activating or silencing a gene.

"Diversity is determined by different types of chemical modifications and also by the number of modifications," Montgomery said. "And those modifications are the unit of epigenetic information, just as the DNA sequence is the unit of genetic information." Depending on the precise nature of the histone modification, any given gene associated with modified histones is marked to be turned on or off.

In the study, eed is the first protein shown to be required for the addition of a single methyl group to histone H3, said Montgomery. Knowing which proteins are responsible for the various histone modifications is the first step toward understanding how epigenetics influences such occurrences as cancer and birth defects, he added.

The discovery that eed is required to modify histone H3 in a unique way opens up new lines of investigation into the role eed might play in diverse biological processes.

"It may give us new gene targets to study relative to cancer and other disease states that may have these marks and have not been examined but should be," Magnuson said.

Another application of epigenetics is stem cell therapeutics, in which any specific tissue type could be derived from stem cells and used to replace damaged or diseased tissue.

Magnuson and his colleagues chose to study how eed influences genes in embryonic stem cells because they thought that would be directly applicable to stem cell technologies.

"In order to get a handle on individual stem cell therapeutics and make this application work, one has to begin to understand the epigenetics of the embryonic stem cells, and we really have very little information on that kind of technology," said Magnuson.

In addition to Magnuson and Montgomery, department of genetics authors include Della Yee, lab technician; Andrew Chen, undergraduate researcher; and Drs. Sundeep Kalantry and Stormy J. Chamberlain, postdoctoral fellows. Arie P. Otte, professor at the Swammerdam Institute for Life Sciences, Amsterdam, also contributed.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>