Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New purification process joins high throughput with high selectivity

18.05.2005


Penn State chemical engineers have demonstrated proof of concept for a new protein purification process that combines ultrafiltration’s high throughput with high specificity achievable through electrically-charged dyes that bind to the protein.


Ultrafiltration is widely used now in the pharmaceutical industry, by milk and whey producers and in water purification. The new process promises to broaden the scope of ultrafiltration to more fine separations.

In the proof of concept experiments, the protein of interest was tagged with a small, commercially-available, negatively-charged dye molecule that can be easily removed. When the solution to be purified flowed through a negatively-charged ultrafiltration membrane, the protein of interest, now negatively-charged because of the attached dye, was retained in higher proportion than when it wasn’t tagged.

Dr. Andrew Zydney, professor of chemical engineering and a developer of the process, says, "Classically, in ultrafiltration, the size of the pores in the filter determined what could get through. Recent studies have demonstrated that additional retention can be achieved using electrically charged membranes if the protein were of like charge. However, these new experiments have shown that you can enhance retention for the same size pore by attaching a charged dye marker to the protein of interest to change its electrical charge."



The new purification process is detailed in a paper, "Controlling Protein Transport in Ultrafiltration Using Small Charged Ligands," published online in the current issue of the journal, Biotechnology and Bioengineering. The authors are Suma Rao, doctoral candidate in chemical engineering, and Zydney, who is also head of the Department of Chemical Engineering.

For their proof of concept experiments, the researchers chose bovine serum albumin (BSA) and the dye Cibacron Blue. They obtained and compared sieving data from neutral and negatively-charged filters. They found that the addition of about one gram per liter of Cibacron Blue to an eight gram per liter solution of BSA caused a reduction in the BSA sieving coefficient by more than 100 times (two orders of magnitude) when passed through the negatively-charged filter.

The researchers note in their paper that it would be possible to design a system in which the protein and dye were separated after filtering and the dye recycled for subsequent processes. For example, in the case of Cibacron Blue and BSA, decreasing the acidity of the solution and adding certain salts causes the dye to detach readily from the BSA. The dye can then be recovered through filtration.

While the proof of concept experiments were conducted with just one protein, the researchers say that it should be possible to exploit the specificity of dye-binding interactions to enhance the selectivity of other protein separations providing new opportunities for membrane systems.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>