Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers improve plastic’s potential for use in implants by linking it to biological material

18.05.2005


Engineers at The University of Texas at Austin have found a way to modify a plastic to anchor molecules that promote nerve regeneration, blood vessel growth or other biological processes.



In the study led by Dr. Christine Schmidt, the researchers identified a piece of protein from among a billion candidates that could perform the unusual feat of attaching to polypyrrole, a synthetic polymer (plastic) that conducts electricity and has shown promise in biomedical applications. When the protein piece, or peptide, was linked to a smaller protein piece that human cells like to attach to, polypyrrole gained the ability to attach to cells grown in flasks in the laboratory.

“It will be very useful from a biomedical standpoint to be able to link factors to polypyrrole in the future that stimulate nerve growth or serve other functions,” said Schmidt, an associate professor of biomedical engineering at the university.


Schmidt is the principal author for the study conducted with colleague Dr. Angela Belcher at Massachusetts Institute of Technology. It was published online May 15 by the journal Nature Materials.

Polypyrrole is of interest for tissue engineering and other purposes because it is a non-toxic plastic that conducts electricity. As a result, it could be used to extend previous experiments in Schmidt’s laboratory. The experiments involve wrapping a tiny strip of plastic around damaged, cable-like extensions of nerve cells called neurites to help them regenerate.

“We can apply an electric field to this synthetic material and enhance neurite repair,” said Schmidt. The newly gained ability to attach proteins to polypyrrole, she said, will mean that growth-enhancing factors could also be linked to this plastic wrapping, further stimulating neurite regeneration.

Working with Schmidt and Belcher, the paper’s lead authors, graduate students Archit Sanghvi and Kiley Miller identified the peptide that attaches to polypyrrole from among the billion alternatives initially analyzed. These unique peptides were displayed on the outer surface of a harmless type of virus called a bacteriophage that was purchased commercially.

To hunt for the plastic-preferring peptide, Sanghvi and Miller added a solution containing bacteriophages that displayed different peptides to a container with polypyrrole stuck on its inner surface. The bacteriophages that didn’t wash away when exposed to conditions that hinder attachment were retested on a new polypyrrole-coated container, a process that was repeated four more times.

The sticky peptide selected, known as T59, is a string of 12 amino acids. To make certain that something else on the outer surface of the bacteriophage virus wasn’t responsible for its perceived stickiness, the researchers demonstrated that T59 by itself could attach to immobilized polypyrrole, using synthetic copies of it made at the university’s Institute for Cellular and Molecular Biology. In addition, they determined that a certain amino acid, aspartic acid, had to be a part of T59 for it to attach well to the plastic.

Aspartic acid carries a negative charge, which in T59 appeared to be drawn to the positively charged surface of the polypyrrole the way magnets of opposite charges cling together. Yet other peptides containing aspartic acid didn’t attach to polypyrrole, leading the researchers to speculate that something contributed by the other amino acids in T59 influenced its 3-dimensional shape in a way that augmented its plastic preference.

“This aspartic acid is just one piece of the puzzle,” Sanghvi said. “There are still more pieces to put together.”

The researchers also evaluated how well T59 clings to polypyrrole. They attached copies of the peptide to the tip of an atomic force microscope at the university’s Center for Nano- and Molecular Science and Technology. The tip of this specialized microscope is normally passed across the surface of a material to “map” its peaks and valleys. In this case, the surface was a layer of polypyrrole, and the resistance of the peptide-coated tip to being passed across the surface revealed how well T59 clung to the plastic.

“They had a moderately strong interaction, which is useful to know,” Schmidt said, referring to the need for a stable attachment between polypyrrole and biological molecules that T59 would be used to link to.

Schmidt’s laboratory intends to study T59 as a linker to other molecules in the future, possibly including vascular endothelial growth factor, which stimulates the growth of new blood vessels. In addition, they will use the bacteriophage analysis approach, called high-throughput combinatorial screening, to look for peptide linkers for other plastics such as polyglycolic acid under study for tissue-repair or tissue-engineering purposes.

“This is a powerful technique that can be used for biomaterials modification,” Schmidt said, “and it hasn’t really been explored very much until now.”

Becky Rische | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>