Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer researchers shake loose hidden biomarker

12.05.2005


Discovery may pave way for immunotherapies



Using a common chemotherapy agent, researchers at UCLA’s Jonsson Cancer Center and the Department of Pathology and Laboratory Medicine found a way to move an important biomarker expressed in prostate cancer, shaking it loose from one location in a cell – where it could not be accessed by blood – to another, easier to target area. The discovery, outlined in the cover article of May 11 edition of the peer-reviewed journal Molecular Cancer Therapeutics, could have important implications for using immunotherapy to treat prostate cancer, said Ayyappan K. Rajasekaran, a Jonsson Cancer Center researcher and senior author of the article.

The method discovered by the research team places the prostate-specific membrane antigen (PSMA) in a location on the cell that would allow blood-borne immunotherapies to access the biomarker, transforming it from a hidden target into an exposed one. "In prostate cancer cells, PSMA is expressed in the apical region of the cell membrane, which blood can’t reach, so injection of immunotherapy into the bloodstream is not effective," said Rajasekaran, also an associate professor of pathology and laboratory medicine. "By using information from very basic studies about how the PSMA protein is targeted in these cells, we identified a way to redirect this protein within the cell. We found that if we disturbed hollow tubular structures called microtubules, part of the cell’s framework, we were able to relocate PSMA from its ’hidden’ location on the apical membrane to an accessible area in the basolateral surface."


To cause this disturbance and the resulting relocation of PSMA, Rajasekaran and his team employed a commonly used cancer chemotherapy agent, which destroys the microtubules. "These patients are getting chemotherapy anyway, and once we move the PSMA to a more accessible area on the prostate cancer cell, we might be able to use antibody-based immunotherapies as well, and they could be administered in the blood," he said.

Rajasekaran said PSMA is an important biomarker for prostate cancer and its expression in the cell is proportional to the severity of the cancer – the more advanced the disease, the more PSMA is expressed.

Rajasekaran and his team also showed for the first time in this study that prostate cancer cells maintain a well-differentiated morphology, with the PSMA hidden in the apical membrane of the cell, even when the cancer spreads outside the prostate – a fact that hadn’t been proven before. Many researchers, in fact, had believed the opposite was true, Rajasekaran said. So discovering the mechanism of moving the PSMA to a more treatment accessible location on the cell could have ramifications for treating the sickest patients, those in whom the cancer has spread. "The ability to reverse the polarity of PSMA from apical to the basolateral could have significant implications for the PSMA as a therapeutic target," the study states.

Pairing treatments may be even more important for patients with advanced cancers, for whom few options are available, Rajasekaran said. "Chemotherapy alone doesn’t do everything and immunotherapy alone might not do everything, but if could use both, we might have more success in treating patients, especially those whose cancer has spread," he said.

Rajasekaran and his team performed their research in prostate cancer cells lines and plan to validate their findings first in animal models and then in human clinical trials, which could be available in three to four years.

Prostate cancer is expected to strike 232,090 men this year alone, according to the American Cancer Society. Of those, 30,350 are expected to die. Prostate cancer is the second leading cause of cancer death in men.

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>