Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA cancer researchers shake loose hidden biomarker

12.05.2005


Discovery may pave way for immunotherapies



Using a common chemotherapy agent, researchers at UCLA’s Jonsson Cancer Center and the Department of Pathology and Laboratory Medicine found a way to move an important biomarker expressed in prostate cancer, shaking it loose from one location in a cell – where it could not be accessed by blood – to another, easier to target area. The discovery, outlined in the cover article of May 11 edition of the peer-reviewed journal Molecular Cancer Therapeutics, could have important implications for using immunotherapy to treat prostate cancer, said Ayyappan K. Rajasekaran, a Jonsson Cancer Center researcher and senior author of the article.

The method discovered by the research team places the prostate-specific membrane antigen (PSMA) in a location on the cell that would allow blood-borne immunotherapies to access the biomarker, transforming it from a hidden target into an exposed one. "In prostate cancer cells, PSMA is expressed in the apical region of the cell membrane, which blood can’t reach, so injection of immunotherapy into the bloodstream is not effective," said Rajasekaran, also an associate professor of pathology and laboratory medicine. "By using information from very basic studies about how the PSMA protein is targeted in these cells, we identified a way to redirect this protein within the cell. We found that if we disturbed hollow tubular structures called microtubules, part of the cell’s framework, we were able to relocate PSMA from its ’hidden’ location on the apical membrane to an accessible area in the basolateral surface."


To cause this disturbance and the resulting relocation of PSMA, Rajasekaran and his team employed a commonly used cancer chemotherapy agent, which destroys the microtubules. "These patients are getting chemotherapy anyway, and once we move the PSMA to a more accessible area on the prostate cancer cell, we might be able to use antibody-based immunotherapies as well, and they could be administered in the blood," he said.

Rajasekaran said PSMA is an important biomarker for prostate cancer and its expression in the cell is proportional to the severity of the cancer – the more advanced the disease, the more PSMA is expressed.

Rajasekaran and his team also showed for the first time in this study that prostate cancer cells maintain a well-differentiated morphology, with the PSMA hidden in the apical membrane of the cell, even when the cancer spreads outside the prostate – a fact that hadn’t been proven before. Many researchers, in fact, had believed the opposite was true, Rajasekaran said. So discovering the mechanism of moving the PSMA to a more treatment accessible location on the cell could have ramifications for treating the sickest patients, those in whom the cancer has spread. "The ability to reverse the polarity of PSMA from apical to the basolateral could have significant implications for the PSMA as a therapeutic target," the study states.

Pairing treatments may be even more important for patients with advanced cancers, for whom few options are available, Rajasekaran said. "Chemotherapy alone doesn’t do everything and immunotherapy alone might not do everything, but if could use both, we might have more success in treating patients, especially those whose cancer has spread," he said.

Rajasekaran and his team performed their research in prostate cancer cells lines and plan to validate their findings first in animal models and then in human clinical trials, which could be available in three to four years.

Prostate cancer is expected to strike 232,090 men this year alone, according to the American Cancer Society. Of those, 30,350 are expected to die. Prostate cancer is the second leading cause of cancer death in men.

Kim Irwin | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>