Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Program finds lost genes in nematode genome

11.05.2005


’Good to the last amino acid’


This is C. elegans. Its genome was thought to have been completed until a WUSTL computer scientist applied a computer software program he developed which found scores more genes and predicted the existence of over a thousand additional genes.



A computer scientist at Washington University in St. Louis has applied software that he has developed to the genome of a worm and has found 150 genes that were missed by previous genome analysis methods. Moreover, using the software, he and his colleagues have developed predictions for the existence of a whopping 1, 119 more genes.

Michael Brent, Ph.D., Washington University professor of computer science and engineering, used his unique software, TWINSCAN, on the genome of Caenorhabditis elegans (C. elegans). The genome of another nematode C. briggsae, was also used to determine which parts of the sequence have changed since the nearest common ancestor of the two species. He found first of all that TWINSCAN predicted 60 percent of the genes in the C. elegans genome exactly, right own to the last amino acid.


"This (60 percent) is a new level of accuracy for a complex genome," Brent said. "It’s quite a step up from what you see in the human genome, for instance, where not even a third of the genome can be predicted exactly. The 60 percent is the highest accuracy published for a multicellular organism."

C. elegans is a biological model for animal development and genetics, and is the first animal genome to be sequenced, back in 1998. Nematode researchers rely on a genome annotation database called WormBase. Along with confirmed genes, WormBase includes thousands of predicted genes without evidence from complementary DNA (cDNA) or expressed sequence tags (EST), which help locate genes. These predicted genes are derived by a combination of a program from the previous generation and some curation by human experts. Brent and his colleagues say that the accuracy of WormBase can be improved with the use of TWINSCAN predictions. And Brent predicts that the age of the human genome annotator is passing — the future belongs to computer-driven annotation.

Crossing the tipping point

"We’ve crossed the tipping point with gene prediction where it’s becoming clear that machines can beat human annotators and analysts, on average," he said.

Because of the increasing speed of computers, the TWINSCAN analysis of C. Elegans is able to use more accurate models of intron length than previous analyses. This is important for finding exons, which house the coding machinery of proteins. While getting intron length is helpful for gene annotation, the process is 15 times slower than the typical, less accurate methods. Being able to define intron length has implications for the human genome, which is much larger than C. elegans and has an average intron length of about 4,000 base pairs, compared with an average intron length of a couple hundred base pairs in C. elegans.

Brent and colleagues from the Dana-Farber Cancer Institute and Harvard Medical School published their findings in the April, 2005 issue of Genome Research. Brent’s graduate student, Chaochun Wei, is first author on the paper. The research was supported by grants from NIH, NSF, the National Cancer Institute, the National Human Genome Research Institute, and the National Institute of General Medical Sciences.

Brent has brought his bioinformatics skills to many genomes, including those of mammals, other nematode species and most recently the fungus Cryptococcus neoformans. Brent’s approach to gene prediction stands traditional genome annotation on its head because it starts with a computer analysis of the genome sequence, using that as a hypothesis designing experiments to test the hypothesis. The traditional modus operandi is a data-driven approach that starts with sequencing a random sample of tens of thousands of cDNA clones. Whereas the traditional approach leads to sequencing some genes thousands of times and others not at all, Brent’s approach is to sequence each predicted gene once.

"I’ve been building a case that we should start with predictions," he said. "Each gene sequence is more expensive, but because of the lower redundancy you end up with much better coverage of the genome for the same money."

Chess as metaphor

Brent said that some genome researchers have been reluctant to go towards an automated, hypothesis - driven approach because of a lingering sense that anything that’s been looked at by a human will be more accurate than something produced by a machine.

"But look at the world of chess. Fundamentally, humans are better than machines at chess, but if you get a team of ten people with enough expertise, money, and equipment, and the willingness to work for ten years and burn a lot of computer power, they’ll come up with a machine that can beat the world champion. The same principal applies to developing a machine that can reveal the mysteries of our genes. In this case, the necessary investments have been made, but since there is no sanctioned world championship, it is not yet widely known."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>