Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Program finds lost genes in nematode genome

11.05.2005


’Good to the last amino acid’


This is C. elegans. Its genome was thought to have been completed until a WUSTL computer scientist applied a computer software program he developed which found scores more genes and predicted the existence of over a thousand additional genes.



A computer scientist at Washington University in St. Louis has applied software that he has developed to the genome of a worm and has found 150 genes that were missed by previous genome analysis methods. Moreover, using the software, he and his colleagues have developed predictions for the existence of a whopping 1, 119 more genes.

Michael Brent, Ph.D., Washington University professor of computer science and engineering, used his unique software, TWINSCAN, on the genome of Caenorhabditis elegans (C. elegans). The genome of another nematode C. briggsae, was also used to determine which parts of the sequence have changed since the nearest common ancestor of the two species. He found first of all that TWINSCAN predicted 60 percent of the genes in the C. elegans genome exactly, right own to the last amino acid.


"This (60 percent) is a new level of accuracy for a complex genome," Brent said. "It’s quite a step up from what you see in the human genome, for instance, where not even a third of the genome can be predicted exactly. The 60 percent is the highest accuracy published for a multicellular organism."

C. elegans is a biological model for animal development and genetics, and is the first animal genome to be sequenced, back in 1998. Nematode researchers rely on a genome annotation database called WormBase. Along with confirmed genes, WormBase includes thousands of predicted genes without evidence from complementary DNA (cDNA) or expressed sequence tags (EST), which help locate genes. These predicted genes are derived by a combination of a program from the previous generation and some curation by human experts. Brent and his colleagues say that the accuracy of WormBase can be improved with the use of TWINSCAN predictions. And Brent predicts that the age of the human genome annotator is passing — the future belongs to computer-driven annotation.

Crossing the tipping point

"We’ve crossed the tipping point with gene prediction where it’s becoming clear that machines can beat human annotators and analysts, on average," he said.

Because of the increasing speed of computers, the TWINSCAN analysis of C. Elegans is able to use more accurate models of intron length than previous analyses. This is important for finding exons, which house the coding machinery of proteins. While getting intron length is helpful for gene annotation, the process is 15 times slower than the typical, less accurate methods. Being able to define intron length has implications for the human genome, which is much larger than C. elegans and has an average intron length of about 4,000 base pairs, compared with an average intron length of a couple hundred base pairs in C. elegans.

Brent and colleagues from the Dana-Farber Cancer Institute and Harvard Medical School published their findings in the April, 2005 issue of Genome Research. Brent’s graduate student, Chaochun Wei, is first author on the paper. The research was supported by grants from NIH, NSF, the National Cancer Institute, the National Human Genome Research Institute, and the National Institute of General Medical Sciences.

Brent has brought his bioinformatics skills to many genomes, including those of mammals, other nematode species and most recently the fungus Cryptococcus neoformans. Brent’s approach to gene prediction stands traditional genome annotation on its head because it starts with a computer analysis of the genome sequence, using that as a hypothesis designing experiments to test the hypothesis. The traditional modus operandi is a data-driven approach that starts with sequencing a random sample of tens of thousands of cDNA clones. Whereas the traditional approach leads to sequencing some genes thousands of times and others not at all, Brent’s approach is to sequence each predicted gene once.

"I’ve been building a case that we should start with predictions," he said. "Each gene sequence is more expensive, but because of the lower redundancy you end up with much better coverage of the genome for the same money."

Chess as metaphor

Brent said that some genome researchers have been reluctant to go towards an automated, hypothesis - driven approach because of a lingering sense that anything that’s been looked at by a human will be more accurate than something produced by a machine.

"But look at the world of chess. Fundamentally, humans are better than machines at chess, but if you get a team of ten people with enough expertise, money, and equipment, and the willingness to work for ten years and burn a lot of computer power, they’ll come up with a machine that can beat the world champion. The same principal applies to developing a machine that can reveal the mysteries of our genes. In this case, the necessary investments have been made, but since there is no sanctioned world championship, it is not yet widely known."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>