Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell treatment improves mobility after spinal cord injury

11.05.2005


Discovery reveals how stem cells can be used to help repair acute spinal cord damage



A treatment derived from human embryonic stem cells improves mobility in rats with spinal cord injuries, providing the first physical evidence that the therapeutic use of these cells can help restore motor skills lost from acute spinal cord tissue damage.

Hans Keirstead and his colleagues in the Reeve-Irvine Research Center at UC Irvine have found that a human embryonic stem cell-derived treatment they developed was successful in restoring the insulation tissue for neurons in rats treated seven days after the initial injury, which led to a recovery of motor skills. But the same treatment did not work on rats that had been injured for 10 months. The findings point to the potential of using stem cell-derived therapies for treatment of spinal cord damage in humans during the very early stages of the injury. The study appears in the May 11 issue of The Journal of Neuroscience.


"We’re very excited with these results. They underscore the great potential that stem cells have for treating human disease and injury," Keirstead said. "This study suggests one approach to treating people who’ve just suffered spinal cord injury, although there is still much work to do before we can engage in human clinical tests."

Acute spinal cord damage occurs during the first few weeks of the injury. In turn, the chronic period begins after a few months. It is anticipated that the stem cell treatment in humans will occur during spinal stabilization at the acute phase, when rods and ties are placed in the spinal column to restabilize it after injury. Currently, drug treatments are given during the acute phase to help stabilize the injury site, but they provide only a very mild benefit, and they do not foster regeneration of insulation tissue.

For the study, the UCI team used a novel technique they created to entice human embryonic stem cells to differentiate into early-stage oligodendrocyte cells. Oligodendrocytes are the building blocks of myelin, the biological insulation for nerve fibers that is critical for maintenance of electrical conduction in the central nervous system. When myelin is stripped away through disease or injury, sensory and motor deficiencies result and, in some cases, paralysis can occur.

The researchers injected these cells into rats that had experienced a partial injury to the spinal cord that impairs walking ability -- one group seven days after injury and another 10 months after injury. In both groups, the early-stage cells formed into full-grown oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord.

In the rats treated seven days after the injury, myelin tissue formed as the oligodendrocyte cells wrapped around damaged neurons in the spinal cord. Within two months, these rats began to show significant improvements in walking ability in comparison to injured rats who received no treatment.

In the rats with 10-month-old injuries, though, motor skills did not return. Although the oligodendrocyte cells survived in the chronic injury sites, they could not form myelin because the space surrounding neuron cells had been filled with scar tissue. In the presence of a scar, myelin could not grow.

These studies indicate the importance of myelin loss in spinal cord injury, and illustrate one approach to treating myelin loss. Keirstead and his colleagues are currently working on other approaches using human embryonic stem cells to treat chronic injuries and other disorders of the central nervous system.

In previous studies, Keirstead and colleagues identified how the body’s immune system attacks and destroys myelin during spinal cord injury or disease states. They also have shown that when treated with antibodies to block immune system response, myelin is capable of regenerating, which ultimately restores sensory and motor activity.

Oswald Steward, Gabriel I. Nistor, Giovanna Bernal, Minodora Totiu, Frank Cloutier and Kelly Sharp also participated in the study, which was supported by the Geron Corp., a UC Discovery grant, Research for Cure, the Roman Reed Spinal Cord Injury Research Fund of California and individual donations to the Reeve-Irvine Research Center. Geron provides the human embryonic stem cells for Keirstead’s research.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>