Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell treatment improves mobility after spinal cord injury

11.05.2005


Discovery reveals how stem cells can be used to help repair acute spinal cord damage



A treatment derived from human embryonic stem cells improves mobility in rats with spinal cord injuries, providing the first physical evidence that the therapeutic use of these cells can help restore motor skills lost from acute spinal cord tissue damage.

Hans Keirstead and his colleagues in the Reeve-Irvine Research Center at UC Irvine have found that a human embryonic stem cell-derived treatment they developed was successful in restoring the insulation tissue for neurons in rats treated seven days after the initial injury, which led to a recovery of motor skills. But the same treatment did not work on rats that had been injured for 10 months. The findings point to the potential of using stem cell-derived therapies for treatment of spinal cord damage in humans during the very early stages of the injury. The study appears in the May 11 issue of The Journal of Neuroscience.


"We’re very excited with these results. They underscore the great potential that stem cells have for treating human disease and injury," Keirstead said. "This study suggests one approach to treating people who’ve just suffered spinal cord injury, although there is still much work to do before we can engage in human clinical tests."

Acute spinal cord damage occurs during the first few weeks of the injury. In turn, the chronic period begins after a few months. It is anticipated that the stem cell treatment in humans will occur during spinal stabilization at the acute phase, when rods and ties are placed in the spinal column to restabilize it after injury. Currently, drug treatments are given during the acute phase to help stabilize the injury site, but they provide only a very mild benefit, and they do not foster regeneration of insulation tissue.

For the study, the UCI team used a novel technique they created to entice human embryonic stem cells to differentiate into early-stage oligodendrocyte cells. Oligodendrocytes are the building blocks of myelin, the biological insulation for nerve fibers that is critical for maintenance of electrical conduction in the central nervous system. When myelin is stripped away through disease or injury, sensory and motor deficiencies result and, in some cases, paralysis can occur.

The researchers injected these cells into rats that had experienced a partial injury to the spinal cord that impairs walking ability -- one group seven days after injury and another 10 months after injury. In both groups, the early-stage cells formed into full-grown oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord.

In the rats treated seven days after the injury, myelin tissue formed as the oligodendrocyte cells wrapped around damaged neurons in the spinal cord. Within two months, these rats began to show significant improvements in walking ability in comparison to injured rats who received no treatment.

In the rats with 10-month-old injuries, though, motor skills did not return. Although the oligodendrocyte cells survived in the chronic injury sites, they could not form myelin because the space surrounding neuron cells had been filled with scar tissue. In the presence of a scar, myelin could not grow.

These studies indicate the importance of myelin loss in spinal cord injury, and illustrate one approach to treating myelin loss. Keirstead and his colleagues are currently working on other approaches using human embryonic stem cells to treat chronic injuries and other disorders of the central nervous system.

In previous studies, Keirstead and colleagues identified how the body’s immune system attacks and destroys myelin during spinal cord injury or disease states. They also have shown that when treated with antibodies to block immune system response, myelin is capable of regenerating, which ultimately restores sensory and motor activity.

Oswald Steward, Gabriel I. Nistor, Giovanna Bernal, Minodora Totiu, Frank Cloutier and Kelly Sharp also participated in the study, which was supported by the Geron Corp., a UC Discovery grant, Research for Cure, the Roman Reed Spinal Cord Injury Research Fund of California and individual donations to the Reeve-Irvine Research Center. Geron provides the human embryonic stem cells for Keirstead’s research.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>