Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research raises questions about buckyballs and the environment

10.05.2005


In a challenge to conventional wisdom, scientists have found that buckyballs dissolve in water and could have a negative impact on soil bacteria. The findings raise new questions about how the nanoparticles might behave in the environment and how they should be regulated, according to a report scheduled to appear in the June 1 print issue of the American Chemical Society’s peer-reviewed journal Environmental Science & Technology. ACS is the world’s largest scientific society.



A buckyball is a soccer ball-shaped molecule made up of 60 carbon atoms. Also known as fullerenes, buckyballs have recently been touted for their potential applications in everything from drug delivery to energy transmission. Yet even as industrial-scale production of buckyballs approaches reality, little is known about how these nano-scale particles will impact the natural environment. Recent studies have shown that buckyballs in low concentrations can affect biological systems such as human skin cells, but the new study is among the earliest to assess how buckyballs might behave when they come in contact with water in nature.

Scientists have generally assumed that buckyballs will not dissolve in water, and therefore pose no imminent threat to most natural systems. "We haven’t really thought of water as a vector for the movement of these types of materials," says Joseph Hughes, Ph.D., an environmental engineer at Georgia Tech and lead author of the study.


But Hughes and his collaborators at Rice University in Texas have found that buckyballs combine into unusual nano-sized clumps — which they refer to as "nano-C60" — that are about 10 orders of magnitude more soluble in water than the individual carbon molecules.

In this new experiment, they exposed nano-C60 to two types of common soil bacteria and found that the particles inhibited both the growth and respiration of the bacteria at very low concentrations — as little as 0.5 parts per million. "What we have found is that these C60 aggregates are pretty good antibacterial materials," Hughes says. "It may be possible to harness that for tremendously good applications, but it could also have impacts on ecosystem health."

Scientists simply don’t know enough to accurately predict what impact buckyballs will have on the environment or in living systems, which is exactly why research of this type needs to be done in the early stages of development, Hughes says.

He suggests that his findings clearly illustrate the limitations of current guidelines for the handling and disposal of buckyballs, which are still based on the properties of bulk carbon black. "No one thinks that graphite and diamond are the same thing," Hughes says. They’re both bulk carbon, but they are handled in completely different ways. The same should be true for buckyballs, according to Hughes.

These particles are designed to have unique surface chemistries, and they exhibit unusual properties because they are at the nanometer scale — one billionth of a meter, the range where molecular interactions and quantum effects take place. It is precisely these characteristics that make them both so potentially useful and hazardous to biological systems. "I think we should expect them to behave differently than our current materials, which have been studied based on natural bulk forms," Hughes says. "Learning that C60 behaves differently than graphite should be no surprise."

Overall, the toxicological studies that have been reported in recent years are a signal that the biological response to these materials needs to be considered. "That doesn’t mean that we put a halt on nanotechnology," Hughes says. "Quite the opposite."

"As information becomes available, we have to be ready to modify these regulations and best practices for safety," he continues. "If we’re doing complementary studies that help to support this line of new materials and integrate those into human safety regulations, then the industry is going to be better off and the environment is going to be better off."

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>