Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Little microbe inside sea squirt makes big splash

10.05.2005


Bacterial genome sheds light on synthesizing cancer-fighting compounds



Sea squirts around the world are breathing a sigh of relief, as they no longer run the risk of being harvested for their natural disease-fighting substances. Scientists recently discovered that the bacterium Prochloron didemnii, which lives symbiotically inside the sea squirt, actually produces the desired patellamides, compounds that may one day be used in cancer treatment.

Despite decades of attempts, scientists could not successfully cultivate Prochloron in the laboratory once the bacterium was isolated from the sea squirt. Because samples of Prochloron were easily contaminated with remnants of life inside its animal home, scientists couldn’t tell if the bacterium or the sea squirt produced the sought-after patellamides, until now.


By searching for patellamide synthesis instructions in genomic sequences, scientists found the bacterium indeed has the necessary genes to produce these potentially important biochemicals, solving the source mystery. Knowing which genes Prochloron used for patellamide production also allowed researchers to synthesize the potentially important compounds in the lab using a so-called laboratory workhorse, the bacterium E. coli.

Scientists from The Institute for Genomic Research (TIGR), the University of Utah and the University of California, San Diego, report findings in this week’s online edition of the Proceedings of the National Academy of Sciences.

"This project revealed detailed information about the metabolic capabilities of Prochloron, details that proved to be difficult to determine by other means, " said Patrick Dennis, manager for Prochloron genome sequencing at the National Science Foundation, which funded the study. "Furthermore, " he added, "by producing patellamides in the lab, the team demonstrated an important proof of principle for the biosynthesis of naturally occurring marine products."

Randy Vines | EurekAlert!
Further information:
http://www.nsf.gov
http://www.tigr.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>