Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus-farming termites descend from an African rain forest Eve

10.05.2005


Agriculture is not unique to humans: some insect groups have also evolved this way of life. One such group is the fungus-farming termites, which cultivate fungi as food inside their nests. Such termites can be found in both rain forest and savannah habitats in the Old World tropics, from Africa to Asia. But as researchers report this week, a combination of DNA sequence analysis and computer modelling suggests that termite agriculture originated in the African rain forest, and gave rise to the many fungus-cultivating termite species alive today in various parts of the Old World.




The relationship between the termites and the cultivated fungus represents an impressive example of mutualistic symbiosis. The termites use chewed plant material, such as wood and dry grass, to feed the fungus and allow it to flourish, while the fungus converts otherwise indigestible plant material into nutrients the termites can utilize. Earlier work had shown that in the evolutionary past, a single, unreversed, transition to agriculture occurred in which termites domesticated a single lineage of fungi, represented today by the genus Termitomyces, a white rot fungus. These fungi are some of the few organisms that can digest the plant component lignin. Within the termite colonies, which can grow very large, the fungus grows on a special structure called the comb, which is maintained by the termites by the continual addition of new plant material.

Researchers Duur Aanen (University of Copenhagen) and Paul Eggleton (The Natural History Museum London), having sampled 58 colonies of fungus-cultivating termites (representing 49 species) in Senegal, Cameroon, Gabon, Kenya, South Africa, Madagascar, India, Sri Lanka, Thailand and Malaysian Borneo, now provide strong evidence that termite agriculture originated in African rain forest. Their reconstruction of ancestral habitats is based on the habitat of living species and analysis of DNA-based reconstructions of termite relationships.


The rain forest origin of fungus-growing termites is remarkable, as extant species of fungus-growing termites are ecologically (in terms of their relative contribution to decomposition processes) and evolutionarily (in terms of species numbers) most successful in savannah ecosystems. The researchers hypothesize that the ecological success of fungus-growing termites in savannas is due to the adoption of a highly successful rain forest process (fungal white-rot decay) by domesticating white-rot fungi. By offering those domesticated fungi a constant supply of growth substrate, and humid, highly buffered, rain forest like climatic conditions in their nests, termites have been able to export this rain forest process into the savannas. The marrying of termites and fungi in a mutualistic symbiosis has thus allowed both partners to conquer the savannah: agricultural termites and their mutualistic fungi are both more successful in this habitat than each of their non-agricultural sister groups, which thrive in the rain forest.

Interestingly, those results have some parallels to the origin and subsequent evolution of human agriculture. Human agriculture is also believed to have originated in relatively favourable areas to which most domesticable plants and animals were native. From the homelands of domestication, agriculture has later spread to other regions, including to much more unfavourable areas. This occurred either by the adoption of an agricultural lifestyle by local hunter-gatherers, or, and probably more often, through replacement of local hunter-gatherers by farmers. The agricultural lifestyle has allowed both humans and their domesticated organisms to exploit unfavourable areas more effectively and to reach far higher population densities than each of their non-agricultural relatives can alone. Furthermore, besides their agricultural proficiency, fungus-farming termites resemble humans in another respect: just like the human female ancestor was African, so was the ’Eve’ of fungus-growing termites, and just as humans later migrated out of Africa, so have fungus-farming termites. Evidence suggests they have colonised Asia at least four times.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>