Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus-farming termites descend from an African rain forest Eve

10.05.2005


Agriculture is not unique to humans: some insect groups have also evolved this way of life. One such group is the fungus-farming termites, which cultivate fungi as food inside their nests. Such termites can be found in both rain forest and savannah habitats in the Old World tropics, from Africa to Asia. But as researchers report this week, a combination of DNA sequence analysis and computer modelling suggests that termite agriculture originated in the African rain forest, and gave rise to the many fungus-cultivating termite species alive today in various parts of the Old World.




The relationship between the termites and the cultivated fungus represents an impressive example of mutualistic symbiosis. The termites use chewed plant material, such as wood and dry grass, to feed the fungus and allow it to flourish, while the fungus converts otherwise indigestible plant material into nutrients the termites can utilize. Earlier work had shown that in the evolutionary past, a single, unreversed, transition to agriculture occurred in which termites domesticated a single lineage of fungi, represented today by the genus Termitomyces, a white rot fungus. These fungi are some of the few organisms that can digest the plant component lignin. Within the termite colonies, which can grow very large, the fungus grows on a special structure called the comb, which is maintained by the termites by the continual addition of new plant material.

Researchers Duur Aanen (University of Copenhagen) and Paul Eggleton (The Natural History Museum London), having sampled 58 colonies of fungus-cultivating termites (representing 49 species) in Senegal, Cameroon, Gabon, Kenya, South Africa, Madagascar, India, Sri Lanka, Thailand and Malaysian Borneo, now provide strong evidence that termite agriculture originated in African rain forest. Their reconstruction of ancestral habitats is based on the habitat of living species and analysis of DNA-based reconstructions of termite relationships.


The rain forest origin of fungus-growing termites is remarkable, as extant species of fungus-growing termites are ecologically (in terms of their relative contribution to decomposition processes) and evolutionarily (in terms of species numbers) most successful in savannah ecosystems. The researchers hypothesize that the ecological success of fungus-growing termites in savannas is due to the adoption of a highly successful rain forest process (fungal white-rot decay) by domesticating white-rot fungi. By offering those domesticated fungi a constant supply of growth substrate, and humid, highly buffered, rain forest like climatic conditions in their nests, termites have been able to export this rain forest process into the savannas. The marrying of termites and fungi in a mutualistic symbiosis has thus allowed both partners to conquer the savannah: agricultural termites and their mutualistic fungi are both more successful in this habitat than each of their non-agricultural sister groups, which thrive in the rain forest.

Interestingly, those results have some parallels to the origin and subsequent evolution of human agriculture. Human agriculture is also believed to have originated in relatively favourable areas to which most domesticable plants and animals were native. From the homelands of domestication, agriculture has later spread to other regions, including to much more unfavourable areas. This occurred either by the adoption of an agricultural lifestyle by local hunter-gatherers, or, and probably more often, through replacement of local hunter-gatherers by farmers. The agricultural lifestyle has allowed both humans and their domesticated organisms to exploit unfavourable areas more effectively and to reach far higher population densities than each of their non-agricultural relatives can alone. Furthermore, besides their agricultural proficiency, fungus-farming termites resemble humans in another respect: just like the human female ancestor was African, so was the ’Eve’ of fungus-growing termites, and just as humans later migrated out of Africa, so have fungus-farming termites. Evidence suggests they have colonised Asia at least four times.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com
http://www.cell.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>