Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover molecular mechanism that desensitizes us to cold

28.04.2005


Findings demonstrate mechanism used by numerous membrane proteins throughout the body – opens pathway to new areas of exploration

Mount Sinai School of Medicine researchers have discovered how the membrane protein that allows us to sense cold works and how this protein becomes desensitized so that one no longer feels the cold. The study, published this week as an advance online publication by Nature Neuroscience, focused on a specific region of the cold receptor which is found in many other receptors, including ones involved in taste, vision and fertilization. Therefore, the findings may have important implications across a wide range of areas.

Diomedes Logothetis, PhD, Dean of the Mount Sinai Graduate School of Biological Sciences, post-doctoral fellow Tibor Rohacs and colleagues studied the receptor that is responsible for the sensation of cold. They found that a specific region of this receptor interacts with a signaling lipid in the cell membrane called PIP2. Cold or menthol stimulate this receptor and alter the electrical properties of the membrane, a process that leads to the sensation of cold. When the receptor is stimulated, calcium enters the cell and stimulates the breakdown of PIP2. When PIP2 is broken down, the receptor becomes inactive, thus ending the sensation or desensitizing the cell to the cold stimulus.



"This finding provides critical information to help us understand how we sense heat and cold and from that to expand our understanding of temperature regulation," said Dr. Logothetis. "Additionally, because the region of this receptor that interacts with PIP2 is found in many similar membrane proteins, we now have a new lead in investigating regulation of the many functions in which these proteins are involved."

Many signals, such as neurotransmitters and growth factors are known to catalyze the breakdown of PIP2. Now that researchers know how PIP2 interacts with this large class of membrane proteins, they can begin to look out how these signals work and what effects they are having in various areas of the body.

The Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>