Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover molecular mechanism that desensitizes us to cold

28.04.2005


Findings demonstrate mechanism used by numerous membrane proteins throughout the body – opens pathway to new areas of exploration

Mount Sinai School of Medicine researchers have discovered how the membrane protein that allows us to sense cold works and how this protein becomes desensitized so that one no longer feels the cold. The study, published this week as an advance online publication by Nature Neuroscience, focused on a specific region of the cold receptor which is found in many other receptors, including ones involved in taste, vision and fertilization. Therefore, the findings may have important implications across a wide range of areas.

Diomedes Logothetis, PhD, Dean of the Mount Sinai Graduate School of Biological Sciences, post-doctoral fellow Tibor Rohacs and colleagues studied the receptor that is responsible for the sensation of cold. They found that a specific region of this receptor interacts with a signaling lipid in the cell membrane called PIP2. Cold or menthol stimulate this receptor and alter the electrical properties of the membrane, a process that leads to the sensation of cold. When the receptor is stimulated, calcium enters the cell and stimulates the breakdown of PIP2. When PIP2 is broken down, the receptor becomes inactive, thus ending the sensation or desensitizing the cell to the cold stimulus.



"This finding provides critical information to help us understand how we sense heat and cold and from that to expand our understanding of temperature regulation," said Dr. Logothetis. "Additionally, because the region of this receptor that interacts with PIP2 is found in many similar membrane proteins, we now have a new lead in investigating regulation of the many functions in which these proteins are involved."

Many signals, such as neurotransmitters and growth factors are known to catalyze the breakdown of PIP2. Now that researchers know how PIP2 interacts with this large class of membrane proteins, they can begin to look out how these signals work and what effects they are having in various areas of the body.

The Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>