Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD medical researchers show protein’s role in stopping bacterial-induced inflammation

28.04.2005


In findings that could have implications for autoimmune disorders and drug-resistant bacterial infections, researchers at the University of California, San Diego (UCSD) School of Medicine have identified a key protein involved in the appropriate shut-down of inflammation following an immune response to invading pathogens.

Published in the April 28, 2005 issue of the journal Nature, the study in mice and lab cultures of immune cells called macrophages showed that a protein called I-kappa-B kinase alpha (IKKa) is responsible for terminating an inflammatory response before it can damage cells and organs.

Senior author Michael Karin, Ph.D., UCSD professor of pharmacology, explained that IKKa is part of a sophisticated two-punch system that maintains a proper inflammatory response. While it is well known that IKKa’s sister protein, IKK beta (IKKb), initiates the inflammatory response, little was known about the mechanism for stopping the response before it injures tissue, such as the damage that occurs in chronic bacterial and parasitic infections like tuberculosis and leprosy, or in autoimmune disorders like rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus (SLE).



Karin’s team, which was the first to identify the IKK protein complex in 1996, determined in this new investigation that both IKKa and IKKb are activated at the same time following a microbial infection. While IKKb initiates the inflammatory response by causing the degradation of inhibitory proteins called IkBs, IKKa interacts with two additional proteins – RelA and C-Rel – which move into the nucleus of the cell after the IkBs are degraded. After being "tagged" by IKKa in the cytoplasm of the cell, RelA and c-Rel bind to genes that mediate the inflammatory response. But their life is limited – the IKKa-mediated "tag" ensures that RelA and c-Rel will bind to their target genes for only a short duration. Once RelA and c-Rel are removed from their target genes, the inflammatory response is terminated. "This is very important for a proper inflammatory response in infection and immunity," Karin said. "The inflammatory response involves the production of potentially toxic mediators, so it is important that inflammation be allowed to do its work rapidly, but only transiently."

The new findings also have implications for disorders such as flesh-eating staph infections and drug-resistant bacterial infections that are difficult to treat. The researchers note that in these cases, it might be possible to develop an inhibitor of IKKa that boosts the inflammatory response to better fight these infections. However, such an inhibitor should have a short half-life, so that its potential devastating effect can be properly terminated.

The Karin lab, which has made several of the past discoveries involving IKKb’s pro-inflammatory role, has also studied IKKa over the years, but they have identified roles unrelated to the primary inflammatory response. For example, in 2001, the investigators determined that IKKa was essential for formation of the skin’s outer layer.* In a follow-up study, the team found clues that IKKa may be more involved in the immune response than they previously thought, but its role still appeared limited.** The current study is the first, however, to specifically show the novel mechanisms used by the protein to control the duration of an inflammatory response.

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>