Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells from brain transformed to produce insulin at Stanford

26.04.2005


With careful coaxing, stem cells from the brain can form insulin-producing cells that mimic those missing in people with diabetes, according to a paper published in the April 26 issue of PLoS Medicine.



Although the work is not yet ready for human patients, Seung Kim, MD, PhD, the lead author and assistant professor of developmental biology at the Stanford University School of Medicine, said it could lead to new ways of transplanting insulin-producing cells into people with diabetes, eventually providing a cure for the disease.

In past work, Kim and members of his lab enticed mouse embryonic stem cells to transform into insulin-producing cells. When transplanted into diabetic mice, these cells effectively made up for the lost insulin-producing cells in the pancreas, called islet cells, and treated the diabetes. However, embryonic stem cells are difficult to work with in the lab and most existing human embryonic stem cell lines are contaminated and can’t be transplanted into humans.


Kim thought that human neural stem cells may be one way to sidestep the more problematic embryonic stem cells. The study shows that his intuition was correct.

"When you look at islets cells you realize that they resemble neurons," Kim said. Like neurons, islet cells respond to external signals by changing their electrical properties and releasing packages of proteins. In the case of islets, that protein is insulin.

What’s more, some neurons in mice and humans take the first steps toward producing insulin. In insects such as fruit flies, the cells that produce insulin and regulate blood sugar are, in fact, neurons. Taken together, this evidence suggested to Kim that neural stem cells may be able to produce insulin.

Despite Kim’s informed hunch, the fact that it worked is a bit surprising.

Until recently, people had though that stem cells taken from the brain would only be able to transform into brain-related tissues such as nerves and support cells. But a group at the Salk Institute in San Diego recently published a report in which neural stem cells transformed into cells that line blood vessels - a far cry from a neuron. "That work gave us confidence that these cells could become more than neuronal cells," Kim said.

Working with the cells in a lab dish, Kim and postdoctoral fellow Yuichi Hori, MD, PhD, now an associate professor at Kobe University in Japan, added a cocktail of chemicals in a sequence that they knew might prod the stem cells to mature into insulin-producing cells. After some trial and error, they found the right combination and sequence. The end result was a dish full of cells that could produce insulin and release it in response to sugar added to the environment.

These cells don’t perfectly mimic human islet cells. Kim’s cells made some, but not all, proteins normally made by islet cells, and they continued to make some proteins found in neurons. Nonetheless, the fact that they could respond to sugar by producing insulin was exciting.

Kim’s next step was to find out if the cells could perform the same feat in a mouse. The group transplanted the cells into a cavity in the kidney where other types of insulin-producing cells have been found to survive. When the blood sugar went up in these mice, the cells once again released insulin. After four weeks the cells had survived, continued to produce insulin and had not changed into other cell types or formed tumors.

Kim noted that the amount of insulin produced wasn’t enough to effectively treat diabetes. Still, the work is a first step towards that eventual goal. It also hints that neuronal stem cells have many potential uses beyond treating brain disease.

He thinks this work has additional value because the method used to produce insulin from neural stem cells is completely new. "The more ways we discover to form insulin-producing cells from stem cells, the more likely it is that stem cells can be used for islet replacement," Kim said.

Kim hopes this work, or related work with other sources of stem cells, could one day replace human islet cells in people with diabetes. Right now, people with diabetes face a lifetime of insulin injections. In rare cases, some patients can receive cell transplants from cadavers, but that source of cells is far smaller than the total number of people who could benefit.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>