Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells from brain transformed to produce insulin at Stanford

26.04.2005


With careful coaxing, stem cells from the brain can form insulin-producing cells that mimic those missing in people with diabetes, according to a paper published in the April 26 issue of PLoS Medicine.



Although the work is not yet ready for human patients, Seung Kim, MD, PhD, the lead author and assistant professor of developmental biology at the Stanford University School of Medicine, said it could lead to new ways of transplanting insulin-producing cells into people with diabetes, eventually providing a cure for the disease.

In past work, Kim and members of his lab enticed mouse embryonic stem cells to transform into insulin-producing cells. When transplanted into diabetic mice, these cells effectively made up for the lost insulin-producing cells in the pancreas, called islet cells, and treated the diabetes. However, embryonic stem cells are difficult to work with in the lab and most existing human embryonic stem cell lines are contaminated and can’t be transplanted into humans.


Kim thought that human neural stem cells may be one way to sidestep the more problematic embryonic stem cells. The study shows that his intuition was correct.

"When you look at islets cells you realize that they resemble neurons," Kim said. Like neurons, islet cells respond to external signals by changing their electrical properties and releasing packages of proteins. In the case of islets, that protein is insulin.

What’s more, some neurons in mice and humans take the first steps toward producing insulin. In insects such as fruit flies, the cells that produce insulin and regulate blood sugar are, in fact, neurons. Taken together, this evidence suggested to Kim that neural stem cells may be able to produce insulin.

Despite Kim’s informed hunch, the fact that it worked is a bit surprising.

Until recently, people had though that stem cells taken from the brain would only be able to transform into brain-related tissues such as nerves and support cells. But a group at the Salk Institute in San Diego recently published a report in which neural stem cells transformed into cells that line blood vessels - a far cry from a neuron. "That work gave us confidence that these cells could become more than neuronal cells," Kim said.

Working with the cells in a lab dish, Kim and postdoctoral fellow Yuichi Hori, MD, PhD, now an associate professor at Kobe University in Japan, added a cocktail of chemicals in a sequence that they knew might prod the stem cells to mature into insulin-producing cells. After some trial and error, they found the right combination and sequence. The end result was a dish full of cells that could produce insulin and release it in response to sugar added to the environment.

These cells don’t perfectly mimic human islet cells. Kim’s cells made some, but not all, proteins normally made by islet cells, and they continued to make some proteins found in neurons. Nonetheless, the fact that they could respond to sugar by producing insulin was exciting.

Kim’s next step was to find out if the cells could perform the same feat in a mouse. The group transplanted the cells into a cavity in the kidney where other types of insulin-producing cells have been found to survive. When the blood sugar went up in these mice, the cells once again released insulin. After four weeks the cells had survived, continued to produce insulin and had not changed into other cell types or formed tumors.

Kim noted that the amount of insulin produced wasn’t enough to effectively treat diabetes. Still, the work is a first step towards that eventual goal. It also hints that neuronal stem cells have many potential uses beyond treating brain disease.

He thinks this work has additional value because the method used to produce insulin from neural stem cells is completely new. "The more ways we discover to form insulin-producing cells from stem cells, the more likely it is that stem cells can be used for islet replacement," Kim said.

Kim hopes this work, or related work with other sources of stem cells, could one day replace human islet cells in people with diabetes. Right now, people with diabetes face a lifetime of insulin injections. In rare cases, some patients can receive cell transplants from cadavers, but that source of cells is far smaller than the total number of people who could benefit.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>