Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Genome Sequence of Major Rice Pathogen

22.04.2005


In a genomics milestone, an international consortium of researchers has for the first time lifted the veil from a fungal plant pathogen by sequencing the genome – or set of all genes – of the most destructive enemy of rice: Magnaporthe grisea, the fungus that causes rice blast disease.



Dr. Ralph Dean, professor of plant pathology and director of North Carolina State University’s Center for Integrated Fungal Research, is the lead author of a research paper that describes the M. grisea genome, published in the April 21 issue of the journal Nature.

It is estimated that rice blast, the leading cause of rice loss, is responsible each year for killing enough rice to feed 60 million people worldwide.


In the Nature paper, Dean and his co-authors shed some light on the adaptations required by a fungus to cause disease. The researchers identify novel receptors that allow the fungus to recognize its environment; secreted proteins that are likely used as offensive weapons to damage rice plants; and redundant, or duplicate, mechanisms that protect the fungus from efforts to fight against it.

“It’s a clever system,” Dean says. “If you have important genes, you tend to have a lot of them.”

The paper also reports that the M. grisea genome contains retro-elements, or remnants of viruses, living in what Dean calls “hot spots” in the genome.

“These virus remnants live in discreet parts of the genome and have high rates of recombination, which may be why the fungus can evolve new strains so quickly,” Dean says.

M. grisea undoubtedly produces toxins which may enable it to be a more effective pathogen. However our knowledge is limited to date, Dean says. The genome sequence should give researchers “a better idea of what types of genes are involved in making the toxin molecules,” he says.

Some of these genes reside in clusters, Dean says, so one focus will be to take apart the clusters and learn more about toxins and their production.

“The primary mission is to uncover the organism’s weaknesses. You do that by building up an arsenal of information of what genes are involved in plant-pathogen interactions,” Dean says.

In July 2002, Dean and researchers from the Whitehead Institute at MIT, now called the Broad Institute, issued a preliminary genome sequence of M. grisea, and made it publicly available so other researchers could work to solve the problems rice blast presents.

“That work decoded the string of letters that comprise the genome,” Dean says. “This paper shows the work of the last two years in bringing this genome to life.”

Bringing the genome to life means capturing the biological meaning of the genome, Dean says. To do this, he and his colleagues used two strategies: comparative genomics and functional genomics.

“In comparative genomics, you compare this genome to that of other organisms, other fungi,” Dean says. “But fungi are very diverse; they’ve evolved tremendously. Fungi within the same family are as dissimilar as man is to a frog.”

In functional genomics, Dean explains, scientists use comparative genomics to get hints about where to concentrate their study efforts.

“M. grisea contains about 11,000 genes, so you can’t look at every one,” he says. “The comparative study allows us to look at novel classes of genes and novel proteins and prioritize study efforts.”

Dr. Ralph Dean | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>