Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Uncover Genome Sequence of Major Rice Pathogen

22.04.2005


In a genomics milestone, an international consortium of researchers has for the first time lifted the veil from a fungal plant pathogen by sequencing the genome – or set of all genes – of the most destructive enemy of rice: Magnaporthe grisea, the fungus that causes rice blast disease.



Dr. Ralph Dean, professor of plant pathology and director of North Carolina State University’s Center for Integrated Fungal Research, is the lead author of a research paper that describes the M. grisea genome, published in the April 21 issue of the journal Nature.

It is estimated that rice blast, the leading cause of rice loss, is responsible each year for killing enough rice to feed 60 million people worldwide.


In the Nature paper, Dean and his co-authors shed some light on the adaptations required by a fungus to cause disease. The researchers identify novel receptors that allow the fungus to recognize its environment; secreted proteins that are likely used as offensive weapons to damage rice plants; and redundant, or duplicate, mechanisms that protect the fungus from efforts to fight against it.

“It’s a clever system,” Dean says. “If you have important genes, you tend to have a lot of them.”

The paper also reports that the M. grisea genome contains retro-elements, or remnants of viruses, living in what Dean calls “hot spots” in the genome.

“These virus remnants live in discreet parts of the genome and have high rates of recombination, which may be why the fungus can evolve new strains so quickly,” Dean says.

M. grisea undoubtedly produces toxins which may enable it to be a more effective pathogen. However our knowledge is limited to date, Dean says. The genome sequence should give researchers “a better idea of what types of genes are involved in making the toxin molecules,” he says.

Some of these genes reside in clusters, Dean says, so one focus will be to take apart the clusters and learn more about toxins and their production.

“The primary mission is to uncover the organism’s weaknesses. You do that by building up an arsenal of information of what genes are involved in plant-pathogen interactions,” Dean says.

In July 2002, Dean and researchers from the Whitehead Institute at MIT, now called the Broad Institute, issued a preliminary genome sequence of M. grisea, and made it publicly available so other researchers could work to solve the problems rice blast presents.

“That work decoded the string of letters that comprise the genome,” Dean says. “This paper shows the work of the last two years in bringing this genome to life.”

Bringing the genome to life means capturing the biological meaning of the genome, Dean says. To do this, he and his colleagues used two strategies: comparative genomics and functional genomics.

“In comparative genomics, you compare this genome to that of other organisms, other fungi,” Dean says. “But fungi are very diverse; they’ve evolved tremendously. Fungi within the same family are as dissimilar as man is to a frog.”

In functional genomics, Dean explains, scientists use comparative genomics to get hints about where to concentrate their study efforts.

“M. grisea contains about 11,000 genes, so you can’t look at every one,” he says. “The comparative study allows us to look at novel classes of genes and novel proteins and prioritize study efforts.”

Dr. Ralph Dean | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>