Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researcher uncovers protein that could stop replication of cancer cells

20.04.2005


A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer.

A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer. Molecular Biology and Microbiology professor Mark Muller has found that the protein, called MKRN1, promotes the destruction of an enzyme called telomerase that enables rapid duplication of cells. While researchers have known for years that healthy cells repress telomerase, they haven’t understood why.

The work by Muller and In Kwong Chung and colleagues at Yonsei University in Seoul, South Korea, was published this month in Genes & Development.



The discovery is a big step that should generate excitement in the cancer research community, said Lee Johnson, chair of the Department of Molecular Genetics at the Ohio State University and an authority in gene expression in mammalian cells.

"To the best of my knowledge, this is the first example of how the enzyme (telomerase) itself can be turned off," Johnson said.

The work focuses on the role that a long stretch of repeated DNA known as a telomere has in influencing cell length and, in turn, its lifespan. Each of the human’s 46 chromosomes is capped on either end by telomeres, which help protect the cells. Each time a cell divides, the telomeres are shortened until eventually they become so small that the cell stops multiplying. Eventually the cell is eliminated from the body.

When telomere ends do not shorten, division continues unabated. The body contains other mechanisms that kick in to stop the errant reproduction unless the telomerase enzyme is present. In laboratory tests, the MKRN1 protein has eliminated the presence of telomerase in tumor cells, said Muller, who conducted genetic research at The Ohio Sate University for 25 years before joining UCF last summer.

Muller said that the MKRN1 gene is incredibly ancient and has likely been part of a human genetic makeup since the beginning of time.

"Many different species have these genes, which emphasizes important collective roles in life" Muller said. "Moreover, mutating or altering the MKRN1 gene is lethal, thus, cells cannot live without these genes, further supporting a key role in growth control and cancer."

The researchers also found that the effectiveness of MKRN1 is greatly increased by combining it with the drug geldanamycin, which has been shown in clinical trials to disrupt the formation of cancerous tumors by binding with protective proteins.

Tom Evelyn | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>