Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCF researcher uncovers protein that could stop replication of cancer cells


A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer.

A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer. Molecular Biology and Microbiology professor Mark Muller has found that the protein, called MKRN1, promotes the destruction of an enzyme called telomerase that enables rapid duplication of cells. While researchers have known for years that healthy cells repress telomerase, they haven’t understood why.

The work by Muller and In Kwong Chung and colleagues at Yonsei University in Seoul, South Korea, was published this month in Genes & Development.

The discovery is a big step that should generate excitement in the cancer research community, said Lee Johnson, chair of the Department of Molecular Genetics at the Ohio State University and an authority in gene expression in mammalian cells.

"To the best of my knowledge, this is the first example of how the enzyme (telomerase) itself can be turned off," Johnson said.

The work focuses on the role that a long stretch of repeated DNA known as a telomere has in influencing cell length and, in turn, its lifespan. Each of the human’s 46 chromosomes is capped on either end by telomeres, which help protect the cells. Each time a cell divides, the telomeres are shortened until eventually they become so small that the cell stops multiplying. Eventually the cell is eliminated from the body.

When telomere ends do not shorten, division continues unabated. The body contains other mechanisms that kick in to stop the errant reproduction unless the telomerase enzyme is present. In laboratory tests, the MKRN1 protein has eliminated the presence of telomerase in tumor cells, said Muller, who conducted genetic research at The Ohio Sate University for 25 years before joining UCF last summer.

Muller said that the MKRN1 gene is incredibly ancient and has likely been part of a human genetic makeup since the beginning of time.

"Many different species have these genes, which emphasizes important collective roles in life" Muller said. "Moreover, mutating or altering the MKRN1 gene is lethal, thus, cells cannot live without these genes, further supporting a key role in growth control and cancer."

The researchers also found that the effectiveness of MKRN1 is greatly increased by combining it with the drug geldanamycin, which has been shown in clinical trials to disrupt the formation of cancerous tumors by binding with protective proteins.

Tom Evelyn | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>