Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCF researcher uncovers protein that could stop replication of cancer cells


A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer.

A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer. Molecular Biology and Microbiology professor Mark Muller has found that the protein, called MKRN1, promotes the destruction of an enzyme called telomerase that enables rapid duplication of cells. While researchers have known for years that healthy cells repress telomerase, they haven’t understood why.

The work by Muller and In Kwong Chung and colleagues at Yonsei University in Seoul, South Korea, was published this month in Genes & Development.

The discovery is a big step that should generate excitement in the cancer research community, said Lee Johnson, chair of the Department of Molecular Genetics at the Ohio State University and an authority in gene expression in mammalian cells.

"To the best of my knowledge, this is the first example of how the enzyme (telomerase) itself can be turned off," Johnson said.

The work focuses on the role that a long stretch of repeated DNA known as a telomere has in influencing cell length and, in turn, its lifespan. Each of the human’s 46 chromosomes is capped on either end by telomeres, which help protect the cells. Each time a cell divides, the telomeres are shortened until eventually they become so small that the cell stops multiplying. Eventually the cell is eliminated from the body.

When telomere ends do not shorten, division continues unabated. The body contains other mechanisms that kick in to stop the errant reproduction unless the telomerase enzyme is present. In laboratory tests, the MKRN1 protein has eliminated the presence of telomerase in tumor cells, said Muller, who conducted genetic research at The Ohio Sate University for 25 years before joining UCF last summer.

Muller said that the MKRN1 gene is incredibly ancient and has likely been part of a human genetic makeup since the beginning of time.

"Many different species have these genes, which emphasizes important collective roles in life" Muller said. "Moreover, mutating or altering the MKRN1 gene is lethal, thus, cells cannot live without these genes, further supporting a key role in growth control and cancer."

The researchers also found that the effectiveness of MKRN1 is greatly increased by combining it with the drug geldanamycin, which has been shown in clinical trials to disrupt the formation of cancerous tumors by binding with protective proteins.

Tom Evelyn | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>