Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researcher uncovers protein that could stop replication of cancer cells

20.04.2005


A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer.

A University of Central Florida researcher has uncovered an ancient protein that could be critical to stopping the uncontrolled division of tumor cells that cause cancer. Molecular Biology and Microbiology professor Mark Muller has found that the protein, called MKRN1, promotes the destruction of an enzyme called telomerase that enables rapid duplication of cells. While researchers have known for years that healthy cells repress telomerase, they haven’t understood why.

The work by Muller and In Kwong Chung and colleagues at Yonsei University in Seoul, South Korea, was published this month in Genes & Development.



The discovery is a big step that should generate excitement in the cancer research community, said Lee Johnson, chair of the Department of Molecular Genetics at the Ohio State University and an authority in gene expression in mammalian cells.

"To the best of my knowledge, this is the first example of how the enzyme (telomerase) itself can be turned off," Johnson said.

The work focuses on the role that a long stretch of repeated DNA known as a telomere has in influencing cell length and, in turn, its lifespan. Each of the human’s 46 chromosomes is capped on either end by telomeres, which help protect the cells. Each time a cell divides, the telomeres are shortened until eventually they become so small that the cell stops multiplying. Eventually the cell is eliminated from the body.

When telomere ends do not shorten, division continues unabated. The body contains other mechanisms that kick in to stop the errant reproduction unless the telomerase enzyme is present. In laboratory tests, the MKRN1 protein has eliminated the presence of telomerase in tumor cells, said Muller, who conducted genetic research at The Ohio Sate University for 25 years before joining UCF last summer.

Muller said that the MKRN1 gene is incredibly ancient and has likely been part of a human genetic makeup since the beginning of time.

"Many different species have these genes, which emphasizes important collective roles in life" Muller said. "Moreover, mutating or altering the MKRN1 gene is lethal, thus, cells cannot live without these genes, further supporting a key role in growth control and cancer."

The researchers also found that the effectiveness of MKRN1 is greatly increased by combining it with the drug geldanamycin, which has been shown in clinical trials to disrupt the formation of cancerous tumors by binding with protective proteins.

Tom Evelyn | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Life Sciences:

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

nachricht Warming temperatures threaten sea turtles
22.06.2017 | Swansea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New technique makes brain scans better

22.06.2017 | Medical Engineering

CWRU researchers find a chemical solution to shrink digital data storage

22.06.2017 | Life Sciences

Warming temperatures threaten sea turtles

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>