Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic changes in breast tissue caused by pregnancy hormone helps prevent breast cancer

20.04.2005


A full-term pregnancy at an early age is one of the most effective ways to reduce the lifetime risk of breast cancer, according to research pathologist Irma H. Russo, M.D., of Fox Chase Cancer Center in Philadelphia. A number of studies around the world have established that a full-term pregnancy by age 20 reduces breast cancer risk by half.



Previous studies by Russo and colleagues suggest that breast cells reach full maturity--a process called differentiation--only after a full-term pregnancy. Once this process is complete, the cells are less vulnerable to cancer-causing changes. An early pregnancy confers the strongest protection by limiting the time breast cells remain immature.

"A high-susceptibility or high-risk window exists early in life, between the start of ovarian function and the first pregnancy," explained Russo. "During this period, the mammary gland has continuously varying characteristics influenced by ovarian and pituitary hormones. These traits change during pregnancy under the influence of embryonic and placental hormones."


Russo’s laboratory has demonstrated that both pregnancy and a hormone produced during pregnancy, called human chorionic gonadotropin (hCG), inhibit breast cancer in rats. The placental hormone hCG promotes full maturation of breast cells and also wards off cancerous changes in these cells later.

"This led us to postulate that this hormone might be useful for breast cancer prevention in women," Russo said. "Toward this goal, we designed experiments to learn, first, whether the protection conferred by hCG results from genetic changes specific to this hormone and, second, whether a similar genomic signature would result from either pregnancy or ovarian steroid hormones. Richard Wang, Ph.D., a postdoctoral associate in Russo’s laboratory, presented the results of the first study Sunday, April 17 at the 96th Annual Meeting of the American Association for Cancer Research. The study used virgin rats treated with a daily hCG injection compared to untreated virgin rats.

"Our results show that hCG induces permanent genetic changes in the mammary gland that are related to its breast cancer prevention effect," said Wang.

In addition to Irma Russo, Wang’s Fox Chase co-authors include Jose Russo, M.D., director of Fox Chase’s Breast Cancer and the Environment Research Center; research associates Gabriela Balogh, Ph.D., and Fathima Sheriff, M.D.; research technicians Rachael L. Fernbaugh and Patricia A. Russo; and postdoctoral associates Daniel A. Mailo, Ph.D., and Raquel Moral, Ph.D.

The second study compared four groups of rats: a pregnant group, a virgin group treated with hCG, a virgin group treated with the hormones estrogen and progesterone (ovarian steroid hormones) and an untreated group. Daniel Mailo presented the results Tuesday, April 19 at the AACR meeting.

"These data show that both hCG and pregnancy induce permanent genetic changes that do not result from steroid hormones," Mailo said. Mailo’s co-authors include Irma and Jose Russo, Sheriff, Balogh and research technician Rebecca Heulings.

A grant from the National Institutes of Health supported both studies.

Colleen Kirsch | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>