Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers isolated from saliva successfully predict oral and breast cancer

20.04.2005


Screening for breast cancer and the early detection of other tumors one day may be as simple as spitting into a collection tube or cup, according to recent studies by UCLA researchers.



In one early study based on a risk model, presented here at the 96th Annual Meeting of the American Association for Cancer Research, the UCLA scientists reported that genetic "biomarkers" isolated in saliva predicted oral squamous cell carcinoma in about nine out of 10 cases.

A recent study by this group, published in Clinical Cancer Research, disclosed similar predictive powers for head and neck cancers.


"These results indicate that such biomarkers found in saliva, called salivary transcriptomes, can be exploited for robust, high-throughput and reproducible tools for early disease detection," said David T. Wong, professor and associate dean of research at the UCLA School of Dentistry and the Jonsson Comprehensive Cancer Center, the study’s senior investigator.

"This is a proof-of-principal study, but our results will need to be validated in a larger sample size in a blinded manner," he added.

Also participating in the study were Yang Li, David Elashoff, MyungShin Oh, Stephanie Tsung, and Mai N. Brooks at UCLA.

Harvesting saliva and other bodily fluids for molecules that detect early cancers has long been a goal of scientists seeking quick and easy screening tools that could be done in a doctor’s office. The search for such tests, however, has been stalled until recently with the advance of several emerging technologies including improved methods to identify, collect, preserve and amplify genetic material and proteins.

In this study, the UCLA team found they could isolate messenger RNA from saliva and blood sera that might have diagnostic value for detecting early cancer. In the cell, messenger RNA or mRNA carries a copy of the genetic code or DNA, housed in the cell’s nucleus, to other parts of the cell for protein manufacture. The process by which genes are copied to mRNA, via an enzyme called RNA polymerase, is called transcription and the products are called transcripts.

The UCLA team collected saliva and blood from 32 patients with primary oral squamous cell carcinoma and 40 breast cancer patients, and matched each with saliva and blood from otherwise normal subjects. New techniques were developed to halt RNA degradation so the scientists could recover as much mRNA as possible for their samples. In all, the new techniques allowed the scientists to harvest up to 10,000 types of human mRNA from saliva, setting up a comparison test between cancer patients and the normal subjects based on analysis of their genetic "profiles."

"Both serum and saliva exhibited unique genetic profiles," said Wong. "The risk model yielded a predictive power of 95 percent by using only the salivary transcriptome samples and 88 percent by using only serum transcriptome samples for oral squamous cell carcinomas," said Wong. "For oral cancer, salivary transcriptome has a slight edge of that of serum transcriptome analysis."

Future research not only will involve a larger sample of cancer patients to refine prediction models, but also will include studies involving precancers and other difficult to detect cancers such as ovarian and pancreatic cancers.

"In my mind the biggest hurdle stems from the fact that salivary nucleic acids or protein markers might be influenced by eating, drinking, smoking, diet or oral hygiene," said Wong. "So our goal is to provide the optimized and standardized protocol to assure consistent results."

The studies are supported by grants from the U.S. Public Health Service (National Institute of Dental & Craniofacial Research) and the UCLA Jonsson Comprehensive Cancer Center to David T. Wong.

Warren R. Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>