Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers look for ’silenced’ genes to monitor kidney cancer patients

19.04.2005


Researchers at Fox Chase Cancer Center in Philadelphia say looking for genes that have been turned off by cancer cells may become a reliable and noninvasive way to detect and monitor cancer in the kidney. The data were presented today at the 96th Annual Meeting of the American Association for Cancer Research in Anaheim, Calif.



Tumor-suppressor genes are part of the body’s natural defense against cancer. When inactivated--or "silenced"--they can no longer do their job, allowing cancer cells to grow. Cancer cells use a mechanism called hypermethylation to turn off the tumor-suppressor genes. "Finding these ’silenced’ genes is a good way to find cancer," said Essel A. Dulaimi, M.D., a postdoctoral fellow at Fox Chase. "Abnormal patterns of methylation can be detected in many cancers, including kidney cancer," she added. Early diagnosis of kidney cancer can lead to earlier treatment with a curative outcome.

Dulaimi and fellow Fox Chase researchers used a molecular DNA-based test to determine the presence or absence of methylation in a particular gene. Called methylation-specific polymerase chain reaction (PCR), the test can find one methylated gene among 100 unmethylated alleles (genes at the same site on a specific chromosome).


"This specificity is enough to detect even a few cancer cells among healthy cells," explained molecular biologist Paul Cairns, Ph.D., lead researcher of the study.

In an earlier Fox Chase study with six methylated genes (Cancer Research, Dec. 15, 2003), Dulaimi, Cairns, urologic surgical oncologist Robert G. Uzzo, M.D., and colleagues found an identical pattern of hypermethylation in both kidney tumors and urine collected before surgery. Forty-four of 50 urine samples (88 percent specificity) had a methylation pattern identical to the original tumor; all of the healthy patients showed no methylation (100 percent specificity).

"A gene that was postive for methylation in the urine was always positive in the matched tumor, " explained Cairns. "This is important because the DNA can be studied in the urine samples of patients who are being followed up after kidney surgery."

Thus, the methylation-specific test is a useful noninvasive tool. Until now, renal cancer could only be identified by a pathologist reviewing tumor tissue. In the study presented today at AACR, the researchers tested samples from 25 patients aged 33 to 73 who had undergone surgery to remove cancerous tumors confined to the kidney. At follow-up after surgery, none of the 25 patients had clinical evidence of disease.

The researchers hypothesized that these patients--who earlier had methylated tumors but now had no clinical evidence of disease--would have a follow-up urine sample that would show no methylation. This would confirm that they were, in fact, clinically disease-free.

The results showed that two patients had the same methylated gene in their urine samples that was methylated in the tumor. The other 23 patients had unmethylated genes in their urine samples.

"This means that we can monitor the presence of cancer by checking DNA in the urine periodically and looking for hypermethylation," said Uzzo.

"Our studies have proved that looking for hypermethylation in specific tumor-suppressor genes is useful for finding kidney cancer," Cairns said. "Now, it can also be applied to clinical follow up for patients with renal cancer."

Colleen Kirsch | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>