Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers look for ’silenced’ genes to monitor kidney cancer patients

19.04.2005


Researchers at Fox Chase Cancer Center in Philadelphia say looking for genes that have been turned off by cancer cells may become a reliable and noninvasive way to detect and monitor cancer in the kidney. The data were presented today at the 96th Annual Meeting of the American Association for Cancer Research in Anaheim, Calif.



Tumor-suppressor genes are part of the body’s natural defense against cancer. When inactivated--or "silenced"--they can no longer do their job, allowing cancer cells to grow. Cancer cells use a mechanism called hypermethylation to turn off the tumor-suppressor genes. "Finding these ’silenced’ genes is a good way to find cancer," said Essel A. Dulaimi, M.D., a postdoctoral fellow at Fox Chase. "Abnormal patterns of methylation can be detected in many cancers, including kidney cancer," she added. Early diagnosis of kidney cancer can lead to earlier treatment with a curative outcome.

Dulaimi and fellow Fox Chase researchers used a molecular DNA-based test to determine the presence or absence of methylation in a particular gene. Called methylation-specific polymerase chain reaction (PCR), the test can find one methylated gene among 100 unmethylated alleles (genes at the same site on a specific chromosome).


"This specificity is enough to detect even a few cancer cells among healthy cells," explained molecular biologist Paul Cairns, Ph.D., lead researcher of the study.

In an earlier Fox Chase study with six methylated genes (Cancer Research, Dec. 15, 2003), Dulaimi, Cairns, urologic surgical oncologist Robert G. Uzzo, M.D., and colleagues found an identical pattern of hypermethylation in both kidney tumors and urine collected before surgery. Forty-four of 50 urine samples (88 percent specificity) had a methylation pattern identical to the original tumor; all of the healthy patients showed no methylation (100 percent specificity).

"A gene that was postive for methylation in the urine was always positive in the matched tumor, " explained Cairns. "This is important because the DNA can be studied in the urine samples of patients who are being followed up after kidney surgery."

Thus, the methylation-specific test is a useful noninvasive tool. Until now, renal cancer could only be identified by a pathologist reviewing tumor tissue. In the study presented today at AACR, the researchers tested samples from 25 patients aged 33 to 73 who had undergone surgery to remove cancerous tumors confined to the kidney. At follow-up after surgery, none of the 25 patients had clinical evidence of disease.

The researchers hypothesized that these patients--who earlier had methylated tumors but now had no clinical evidence of disease--would have a follow-up urine sample that would show no methylation. This would confirm that they were, in fact, clinically disease-free.

The results showed that two patients had the same methylated gene in their urine samples that was methylated in the tumor. The other 23 patients had unmethylated genes in their urine samples.

"This means that we can monitor the presence of cancer by checking DNA in the urine periodically and looking for hypermethylation," said Uzzo.

"Our studies have proved that looking for hypermethylation in specific tumor-suppressor genes is useful for finding kidney cancer," Cairns said. "Now, it can also be applied to clinical follow up for patients with renal cancer."

Colleen Kirsch | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>