Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs targeted at muscle cells

19.04.2005


Can be of use in the treatment of diabetes patients with insulin resistance

Type 2 diabetes is a clinical disease characterised by disruption to the metabolism of glucose and lipids as well as to the production of and physiological reactions to insulin. These disruptions are partly due to a reduced absorption of glucose in the cells that form the body’s fat and muscle tissue. Now scientists at Karolinska Institutet have established that a type of drug targeted at receptors in the muscle cells increases the metabolism and absorption of glucose, making it a potential tool in the treatment of diabetes.

These new findings were published recently in the scientific journal Diabetes. The study has been partly financed with two EU grants from the sixth framework programme (EUGENE2 and EXGENESIS), which were recently awarded to an international network of researchers that includes the authors of the article.



The molecular mechanisms behind Type 2 diabetes are not fully known, but both hereditary and environmental factors are thought to contribute to its development. The prevalence and number of new cases of Type 2 diabetes are steadily increasing in the West, owing, it is thought, to the excessive calorie-rich diets and more sedentary nature of typical Western lifestyles.

The receptors in the muscle cells that were studied are called peroxisome proliferators-activated delta receptors (PFAARä) and they reside in the nucleus where they regulate a large number of enzymes involved in the cell’s metabolism and energy production. Using human muscle cells cultivated in vitro, the researchers were able to show that drugs that bind to PFAARä increase the absorption of glucose in the muscle cells. The two experimental drugs tested in the study were GW501516 and GW0742. The trials demonstrate that the two drugs bind to PFAARä, which triggers a series of reactions within the cells. This, in turn, helps to boost glucose absorption into the cells. By specifically blocking certain processes in the cells, the scientists were also able to show that the effects of the drugs resembled those caused by physical activity. They were also able to show that this was not the result of any effect on insulin signals.

"The discoveries we’ve made are important bearing in mind that one of the problems with insulin therapy for patients with Type 2 diabetes is that they eventually develop a resistance to the insulin and no longer respond to the treatment," say Anna Krook and Juleen Zierath, two of the KI research scientists behind the study. "The PFAARä drugs we have studied, on the other hand, have a direct effect on the cultivated muscle cells and act independently of insulin metabolism. If we can show that the drugs are also effective on living patients, it means that they could one day be used for the treatment of patients who have developed insulin resistance."

Sabina Bossi | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>