Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant-rich diets reduce brain damage from stroke in rats

13.04.2005


Your mother was right. Eat your fruits and veggies -- they’re good for you!



And if that’s not reason enough, a new study suggests antioxidant-rich fruits and vegetables may limit brain damage from stroke and other neurological disorders. The study, conducted by researchers at the University of South Florida (USF)College of Medicine, James A. Haley Veterans’ Hospital and the National Institute on Drug Abuse, is posted online and will be published in the May issue of the journal Experimental Neurology.

USF/VA neuroscientist Paula Bickford, PhD, and colleagues found that rats fed diets preventatively enriched with blueberries, spinach or an algae known as spirulina experienced less brain cell loss and improved recovery of movement following a stroke.


The study builds upon previous USF/VA research showing that diets enriched with blueberries, spinach or spirulina reversed normal age-related declines in memory and learning in old rats.

"I was amazed at the extent of neuroprotection these antioxidant-rich diets provided," said Dr. Bickford, a researcher at the USF Center for Aging and Brain Repair and James A. Haley Veterans’ Hospital. "The size of the stroke was 50 to 75 percent less in rats treated with diets supplemented with blueberries, spinach or spirulina before the stroke."

Antioxidant and anti-inflammatory substances in these fruits and vegetables may somehow reduce the nerve cell injury and death triggered by a stroke, the researchers suggest. "The clinical implication is that increasing fruit and vegetable consumption may make a difference in the severity of a stroke," Dr. Bickford said. "It could be a readily available, inexpensive and relatively safe way to benefit stroke patients."

The researchers studied four groups of rats, all fed equal amounts of food for one month. One group was fed rat chow supplemented with blueberries, a second group chow with spinach, and the third chow with spirulina. The control (untreated) group ate chow only.

After four weeks, an ischemic stroke with reperfusion was induced in the rats. An ischemic stroke occurs when a blood clot cuts off the oxygen supply to the brain like the kink in a hose cuts off water flow. Then, later, the clot is released and blood flow returns, which is known as reperfusion.

The size of the stroke in the rats fed blueberry or spinach supplements was half that seen in the brains of untreated rats. Rats fed spirulina-enriched diets had stroke lesions 75 percent smaller than their untreated counterparts. In addition, rats pretreated with the blueberry, spinach or spirulina diets showed greater increases in poststroke movement than the control group.

All the supplemented diets were rich in antioxidants, which scientists say may counteract the burst of free radicals involved in the cascade of brain cell death triggered by an ischemic stroke. An excess of free radicals can damage cellular lipids, proteins and DNA.

The supplemented diets also contained anti-inflammatory substances that may help reduce inflammation-induced injury following a stroke, Dr. Bickford said. When a stroke occurs, immune cells in the brain mount an inflammatory response – rushing to the site of injury to clear away the dead and dying cells. As a result, nearby healthy nerve cells may suffer collateral damage much the same way firefighters breaking into an apartment to put out a fire in one room may inadvertently cause damage to other rooms.

Teasing out just which beneficial chemicals contained in the blueberries and leafy greens might be reproduced therapeutically in pill form is difficult, Dr. Bickford said. "Whole foods contain multiple nutrients, so there are many different ways these diets could be protecting the brain. From a scientific perspective, it’s a package deal."

Dr. Bickford’s team is investigating whether rats treated with antioxidant-rich diets following strokes will experience improved recovery. The researchers also plan to study whether combinations of the diets might provide even greater protection against stroke damage than one diet alone.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.hsc.usf.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>