Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-regulating protein maintains fat-storage, fat-burning balance

13.04.2005


A protein that regulates cholesterol levels in the body also is responsible for maintaining a healthy balance between fat storage and fat burning, according to a UT Southwestern Medical Center study that may lead to new drug targets in the fight against obesity.



In animals and humans, a protein called the liver X receptor, or LXR, senses cholesterol levels. When these receptors detect rising amounts of cholesterol, they activate genes and a series of biochemical reactions that remove diet-derived cholesterol from the body.

The cholesterol-regulating role of LXRs is well understood, but until now, their role in regulating fat levels was unclear.


In their recent study, UT Southwestern researchers found that "knockout" mice genetically engineered to lack the gene for LXR could not store fat and did not become obese when they were fed a Western-style diet high in both fat and cholesterol. However, knockout mice fed only fat were able to store fat.

High-fat diets typically contain both fat and cholesterol, but this study shows that it is the cholesterol component of a high-fat diet that actually triggers the normal fat-storage process in the body, said Dr. David Mangelsdorf, professor of pharmacology and biochemistry at UT Southwestern and senior author of the study.

"Our studies suggest a dual role for LXRs," said Dr. Mangelsdorf, an investigator in the Howard Hughes Medical Institute at UT Southwestern. "Not only do these receptors sense and limit the accumulation of dietary cholesterol, but their activation by cholesterol is required to initiate a major fat-storing process."

The research appears in the April issue of the journal Cell Metabolism.

Because the knockout mice cannot remove excess dietary cholesterol, the animals develop extremely high cholesterol levels.

Surprisingly, the researchers found that the buildup of cholesterol in the knockout mice actually activates a fat-burning process, a finding that provided more evidence of the role LXR plays in regulating the balance between fat burning and fat storage.

"In the animals lacking LXR, not only can they not store fat, but their cholesterol concentrations build to excessive levels, which somehow drives the animals to burn fat," said Dr. Mangelsdorf, who holds the Doris and Bryan Wildenthal Distinguished Chair in Medical Science. "There is some cholesterol-related signal that the liver sends out that permits fat-burning to happen, and uncovering that signal is the big mystery we’re trying to solve next, which may have therapeutic applications."

A better understanding of the cholesterol-driven, fat-burning signal may lead to drugs that control the signal and boost the body’s ability to burn unwanted fat instead of storing it, Dr. Mangelsdorf said. The research also may aid in the development of cholesterol-related drugs. High levels of low-density lipoproteins, or "bad" cholesterol, in humans is a major risk factor for heart disease, heart attack and stroke because it contributes to the buildup of plaque that clogs the walls of arteries.

Previous studies have pointed to a protein called SREBP-1c as the primary component in the biochemical pathway that regulates fat metabolism. When an animal eats a meal rich in nutrients, insulin levels in its body go up. Insulin signals to the SREBP-1c protein to activate subsequent components of the pathway, allowing the body to store incoming nutrients as fat.

But Dr. Mangelsdorf’s research group has shown that LXRs actually regulate SREBP-1c, activating the gene responsible for making the SREBP-1c protein in the first place.

"LXR, this cholesterol sensor, is required for SREBP-1c to be expressed, to get SREBP-1c to initiate its role in regulating fat storage," said Dr. Mangelsdorf, who discovered the LXR protein and the gene responsible for making it. "SREBP-1c had been considered the master regulator of fat synthesis, but our studies have shown that LXR is the master regulator of the master regulator."

From the point of view of evolution, an animal capable of linking its ability to sense cholesterol with its ability to store fat may have had a survival advantage. An adult mammal has virtually no need for dietary cholesterol because its body can synthesize enough on its own. But LXRs give an animal the ability to sense the cholesterol component of a high-fat diet and get rid of it, while retaining the fat and storing it for times of deprivation.

"Our work suggests that fat storage is inextricably linked to the body’s ability to metabolize cholesterol and that the LXRs have evolved as the sensors that govern the unique cross talk between these two important metabolic pathways," Dr. Mangelsdorf said.

Other UT Southwestern researchers involved in the study were Dr. Nada Kalaany, postdoctoral researcher in pharmacology; Dr. Karine Gauthier former postdoctoral fellow; Dr. Pradeep Mammen, assistant professor of internal medicine; Dr. Tatsuya Kitazume, biochemistry postdoctoral researcher; Dr. Julian Peterson, professor of biochemistry; Dr. Jay Horton, associate professor of internal medicine and molecular genetics; and Dr. Daniel Garry, associate professor of internal medicine and molecular biology. Researchers at Harvard Medical School also participated.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>