Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cholesterol-regulating protein maintains fat-storage, fat-burning balance


A protein that regulates cholesterol levels in the body also is responsible for maintaining a healthy balance between fat storage and fat burning, according to a UT Southwestern Medical Center study that may lead to new drug targets in the fight against obesity.

In animals and humans, a protein called the liver X receptor, or LXR, senses cholesterol levels. When these receptors detect rising amounts of cholesterol, they activate genes and a series of biochemical reactions that remove diet-derived cholesterol from the body.

The cholesterol-regulating role of LXRs is well understood, but until now, their role in regulating fat levels was unclear.

In their recent study, UT Southwestern researchers found that "knockout" mice genetically engineered to lack the gene for LXR could not store fat and did not become obese when they were fed a Western-style diet high in both fat and cholesterol. However, knockout mice fed only fat were able to store fat.

High-fat diets typically contain both fat and cholesterol, but this study shows that it is the cholesterol component of a high-fat diet that actually triggers the normal fat-storage process in the body, said Dr. David Mangelsdorf, professor of pharmacology and biochemistry at UT Southwestern and senior author of the study.

"Our studies suggest a dual role for LXRs," said Dr. Mangelsdorf, an investigator in the Howard Hughes Medical Institute at UT Southwestern. "Not only do these receptors sense and limit the accumulation of dietary cholesterol, but their activation by cholesterol is required to initiate a major fat-storing process."

The research appears in the April issue of the journal Cell Metabolism.

Because the knockout mice cannot remove excess dietary cholesterol, the animals develop extremely high cholesterol levels.

Surprisingly, the researchers found that the buildup of cholesterol in the knockout mice actually activates a fat-burning process, a finding that provided more evidence of the role LXR plays in regulating the balance between fat burning and fat storage.

"In the animals lacking LXR, not only can they not store fat, but their cholesterol concentrations build to excessive levels, which somehow drives the animals to burn fat," said Dr. Mangelsdorf, who holds the Doris and Bryan Wildenthal Distinguished Chair in Medical Science. "There is some cholesterol-related signal that the liver sends out that permits fat-burning to happen, and uncovering that signal is the big mystery we’re trying to solve next, which may have therapeutic applications."

A better understanding of the cholesterol-driven, fat-burning signal may lead to drugs that control the signal and boost the body’s ability to burn unwanted fat instead of storing it, Dr. Mangelsdorf said. The research also may aid in the development of cholesterol-related drugs. High levels of low-density lipoproteins, or "bad" cholesterol, in humans is a major risk factor for heart disease, heart attack and stroke because it contributes to the buildup of plaque that clogs the walls of arteries.

Previous studies have pointed to a protein called SREBP-1c as the primary component in the biochemical pathway that regulates fat metabolism. When an animal eats a meal rich in nutrients, insulin levels in its body go up. Insulin signals to the SREBP-1c protein to activate subsequent components of the pathway, allowing the body to store incoming nutrients as fat.

But Dr. Mangelsdorf’s research group has shown that LXRs actually regulate SREBP-1c, activating the gene responsible for making the SREBP-1c protein in the first place.

"LXR, this cholesterol sensor, is required for SREBP-1c to be expressed, to get SREBP-1c to initiate its role in regulating fat storage," said Dr. Mangelsdorf, who discovered the LXR protein and the gene responsible for making it. "SREBP-1c had been considered the master regulator of fat synthesis, but our studies have shown that LXR is the master regulator of the master regulator."

From the point of view of evolution, an animal capable of linking its ability to sense cholesterol with its ability to store fat may have had a survival advantage. An adult mammal has virtually no need for dietary cholesterol because its body can synthesize enough on its own. But LXRs give an animal the ability to sense the cholesterol component of a high-fat diet and get rid of it, while retaining the fat and storing it for times of deprivation.

"Our work suggests that fat storage is inextricably linked to the body’s ability to metabolize cholesterol and that the LXRs have evolved as the sensors that govern the unique cross talk between these two important metabolic pathways," Dr. Mangelsdorf said.

Other UT Southwestern researchers involved in the study were Dr. Nada Kalaany, postdoctoral researcher in pharmacology; Dr. Karine Gauthier former postdoctoral fellow; Dr. Pradeep Mammen, assistant professor of internal medicine; Dr. Tatsuya Kitazume, biochemistry postdoctoral researcher; Dr. Julian Peterson, professor of biochemistry; Dr. Jay Horton, associate professor of internal medicine and molecular genetics; and Dr. Daniel Garry, associate professor of internal medicine and molecular biology. Researchers at Harvard Medical School also participated.

Amanda Siegfried | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>