Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-regulating protein maintains fat-storage, fat-burning balance

13.04.2005


A protein that regulates cholesterol levels in the body also is responsible for maintaining a healthy balance between fat storage and fat burning, according to a UT Southwestern Medical Center study that may lead to new drug targets in the fight against obesity.



In animals and humans, a protein called the liver X receptor, or LXR, senses cholesterol levels. When these receptors detect rising amounts of cholesterol, they activate genes and a series of biochemical reactions that remove diet-derived cholesterol from the body.

The cholesterol-regulating role of LXRs is well understood, but until now, their role in regulating fat levels was unclear.


In their recent study, UT Southwestern researchers found that "knockout" mice genetically engineered to lack the gene for LXR could not store fat and did not become obese when they were fed a Western-style diet high in both fat and cholesterol. However, knockout mice fed only fat were able to store fat.

High-fat diets typically contain both fat and cholesterol, but this study shows that it is the cholesterol component of a high-fat diet that actually triggers the normal fat-storage process in the body, said Dr. David Mangelsdorf, professor of pharmacology and biochemistry at UT Southwestern and senior author of the study.

"Our studies suggest a dual role for LXRs," said Dr. Mangelsdorf, an investigator in the Howard Hughes Medical Institute at UT Southwestern. "Not only do these receptors sense and limit the accumulation of dietary cholesterol, but their activation by cholesterol is required to initiate a major fat-storing process."

The research appears in the April issue of the journal Cell Metabolism.

Because the knockout mice cannot remove excess dietary cholesterol, the animals develop extremely high cholesterol levels.

Surprisingly, the researchers found that the buildup of cholesterol in the knockout mice actually activates a fat-burning process, a finding that provided more evidence of the role LXR plays in regulating the balance between fat burning and fat storage.

"In the animals lacking LXR, not only can they not store fat, but their cholesterol concentrations build to excessive levels, which somehow drives the animals to burn fat," said Dr. Mangelsdorf, who holds the Doris and Bryan Wildenthal Distinguished Chair in Medical Science. "There is some cholesterol-related signal that the liver sends out that permits fat-burning to happen, and uncovering that signal is the big mystery we’re trying to solve next, which may have therapeutic applications."

A better understanding of the cholesterol-driven, fat-burning signal may lead to drugs that control the signal and boost the body’s ability to burn unwanted fat instead of storing it, Dr. Mangelsdorf said. The research also may aid in the development of cholesterol-related drugs. High levels of low-density lipoproteins, or "bad" cholesterol, in humans is a major risk factor for heart disease, heart attack and stroke because it contributes to the buildup of plaque that clogs the walls of arteries.

Previous studies have pointed to a protein called SREBP-1c as the primary component in the biochemical pathway that regulates fat metabolism. When an animal eats a meal rich in nutrients, insulin levels in its body go up. Insulin signals to the SREBP-1c protein to activate subsequent components of the pathway, allowing the body to store incoming nutrients as fat.

But Dr. Mangelsdorf’s research group has shown that LXRs actually regulate SREBP-1c, activating the gene responsible for making the SREBP-1c protein in the first place.

"LXR, this cholesterol sensor, is required for SREBP-1c to be expressed, to get SREBP-1c to initiate its role in regulating fat storage," said Dr. Mangelsdorf, who discovered the LXR protein and the gene responsible for making it. "SREBP-1c had been considered the master regulator of fat synthesis, but our studies have shown that LXR is the master regulator of the master regulator."

From the point of view of evolution, an animal capable of linking its ability to sense cholesterol with its ability to store fat may have had a survival advantage. An adult mammal has virtually no need for dietary cholesterol because its body can synthesize enough on its own. But LXRs give an animal the ability to sense the cholesterol component of a high-fat diet and get rid of it, while retaining the fat and storing it for times of deprivation.

"Our work suggests that fat storage is inextricably linked to the body’s ability to metabolize cholesterol and that the LXRs have evolved as the sensors that govern the unique cross talk between these two important metabolic pathways," Dr. Mangelsdorf said.

Other UT Southwestern researchers involved in the study were Dr. Nada Kalaany, postdoctoral researcher in pharmacology; Dr. Karine Gauthier former postdoctoral fellow; Dr. Pradeep Mammen, assistant professor of internal medicine; Dr. Tatsuya Kitazume, biochemistry postdoctoral researcher; Dr. Julian Peterson, professor of biochemistry; Dr. Jay Horton, associate professor of internal medicine and molecular genetics; and Dr. Daniel Garry, associate professor of internal medicine and molecular biology. Researchers at Harvard Medical School also participated.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>