Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient enzyme guides healthy eating in mammals

13.04.2005


An ancient enzyme in the brains of mammals acts as an innate nutritionist of sorts, guiding them to make healthy choices about what to eat, according to new work published in the April issue of Cell Metabolism. The molecular mechanism is likely to be important in all mammals, including humans, that eat a varied diet comprised of meat and vegetables, the researchers said.



David Ron, of the New York University School of Medicine, and his colleagues found in mice that an enzyme known as GCN2 kinase sets off a cascade of events that relays information to the brain about the amino acid content of foods, enabling the animals to adjust their intake in favor of a more balanced meal. The same enzyme in yeast also acts as an amino acid sensor, earlier work has shown.

"This ancient pathway in mice recognizes drops in blood amino acid levels that occur following consumption of food with an imbalanced composition," said Ron. "That recognition culminates in a behavioral response that limits consumption of the imbalanced food and favors, by default, a more balanced diet."


The new findings confirm and extend a recent report by Dorothy Gietzen at the University of California, Davis, detailing the same pathway in rats.

Amino acids are the building blocks of proteins. While many of the 20 amino acids can be synthesized internally, eight "essential" amino acids must be obtained from food. Scientists have long known that omnivorous animals will consume substantially less of a meal lacking a single essential amino acid, in comparison to an otherwise identical meal that is nutritionally complete.

To explore the role of GCN2 kinase in this feeding behavior, the researchers inactivated the enzyme in the brains of mice. GCN2 kinase, known to be an important amino acid sensor, elicits a stress response by modifying a second protein called translation initiation factor 2 (eIF2a).

Mice without the normal complement of GCN2 in the brain failed to exhibit an aversion to imbalanced food, the researchers reported. The protein inactivation also led to a decline in modified eIF2a in a key part of the brain following consumption of an imbalanced meal.

The findings reveal that the ancient amino acid-sensing pathway affects feeding behavior by activating a brain circuit that biases consumption against imbalanced food sources, the researchers said.

While the findings are in mice, "there’s no reason to believe that the same mechanism isn’t at work in humans," Ron said. However, he suspects that cultural influences coupled with an instinctual drive to consume foods rich in calories might often override the amino acid gauge that would otherwise promote a balanced diet.

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>