Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient enzyme guides healthy eating in mammals

13.04.2005


An ancient enzyme in the brains of mammals acts as an innate nutritionist of sorts, guiding them to make healthy choices about what to eat, according to new work published in the April issue of Cell Metabolism. The molecular mechanism is likely to be important in all mammals, including humans, that eat a varied diet comprised of meat and vegetables, the researchers said.



David Ron, of the New York University School of Medicine, and his colleagues found in mice that an enzyme known as GCN2 kinase sets off a cascade of events that relays information to the brain about the amino acid content of foods, enabling the animals to adjust their intake in favor of a more balanced meal. The same enzyme in yeast also acts as an amino acid sensor, earlier work has shown.

"This ancient pathway in mice recognizes drops in blood amino acid levels that occur following consumption of food with an imbalanced composition," said Ron. "That recognition culminates in a behavioral response that limits consumption of the imbalanced food and favors, by default, a more balanced diet."


The new findings confirm and extend a recent report by Dorothy Gietzen at the University of California, Davis, detailing the same pathway in rats.

Amino acids are the building blocks of proteins. While many of the 20 amino acids can be synthesized internally, eight "essential" amino acids must be obtained from food. Scientists have long known that omnivorous animals will consume substantially less of a meal lacking a single essential amino acid, in comparison to an otherwise identical meal that is nutritionally complete.

To explore the role of GCN2 kinase in this feeding behavior, the researchers inactivated the enzyme in the brains of mice. GCN2 kinase, known to be an important amino acid sensor, elicits a stress response by modifying a second protein called translation initiation factor 2 (eIF2a).

Mice without the normal complement of GCN2 in the brain failed to exhibit an aversion to imbalanced food, the researchers reported. The protein inactivation also led to a decline in modified eIF2a in a key part of the brain following consumption of an imbalanced meal.

The findings reveal that the ancient amino acid-sensing pathway affects feeding behavior by activating a brain circuit that biases consumption against imbalanced food sources, the researchers said.

While the findings are in mice, "there’s no reason to believe that the same mechanism isn’t at work in humans," Ron said. However, he suspects that cultural influences coupled with an instinctual drive to consume foods rich in calories might often override the amino acid gauge that would otherwise promote a balanced diet.

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>