Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopes at microscopic size

11.04.2005


Traditionally if scientists wanted to look at something small they would put a sample under a microscope but now researchers have managed to shrink the microscope itself to the size of a single human cell. An interdisciplinary research team, funded by the Biotechnology and Biological Science Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) have developed optical biochips no larger than a single cell that could lead to faster development of new drugs and quicker medical tests.



The research team moved away from the idea that a microscope is something you have to look through to create optical biochips onto which scientists can place biological samples. Special fluorescent chemicals are then used together with tiny light emitting lasers to allow the scientists to analyse the cells or targets within the cells. Researchers can use this capability to examine cellular conditions for certain diseases or to develop new treatments by studying the way cells react to a drug.

The biochips also raise the possibility of a micro-laboratory, the size of a credit card, which would be able to perform medical diagnostics, improving patient treatment by reducing the number of hospital visits needed for tests.


The initial research has led to the creation of a spin-out company, BioStatus Ltd, supported by a BBSRC Small Business Research Initiative grant. BioStatus has developed the research to refine the fluorescent probe technology and also to make the analysis of biological samples more sophisticated.

Professor Paul Smith, the research group leader, said, "Our research and the outcomes from the spin-out company could help to revolutionise how we examine biological samples. Our next step will be to develop simple, small diagnostic devices. Future generations may be able to use these as the basis for hand-held systems that will be able to perform diagnostic functions in the field that currently require a laboratory test."

Professor Julia Goodfellow, Chief Executive of BBSRC, said, "The success of the research into biochips and the development of the science through the spin-out company shows how cutting edge research in the biosciences can meet real world challenges. Bochips have the potential to make a real difference in medical diagnostics and drug development."

The research is being carried out at the Wales College of Medicine and involves researchers at Cardiff University, University of Bangor, the Gray Cancer Institute in London and collaboration with the University of Warwick and laboratories in the United States.

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>