Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopes at microscopic size

11.04.2005


Traditionally if scientists wanted to look at something small they would put a sample under a microscope but now researchers have managed to shrink the microscope itself to the size of a single human cell. An interdisciplinary research team, funded by the Biotechnology and Biological Science Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC) have developed optical biochips no larger than a single cell that could lead to faster development of new drugs and quicker medical tests.



The research team moved away from the idea that a microscope is something you have to look through to create optical biochips onto which scientists can place biological samples. Special fluorescent chemicals are then used together with tiny light emitting lasers to allow the scientists to analyse the cells or targets within the cells. Researchers can use this capability to examine cellular conditions for certain diseases or to develop new treatments by studying the way cells react to a drug.

The biochips also raise the possibility of a micro-laboratory, the size of a credit card, which would be able to perform medical diagnostics, improving patient treatment by reducing the number of hospital visits needed for tests.


The initial research has led to the creation of a spin-out company, BioStatus Ltd, supported by a BBSRC Small Business Research Initiative grant. BioStatus has developed the research to refine the fluorescent probe technology and also to make the analysis of biological samples more sophisticated.

Professor Paul Smith, the research group leader, said, "Our research and the outcomes from the spin-out company could help to revolutionise how we examine biological samples. Our next step will be to develop simple, small diagnostic devices. Future generations may be able to use these as the basis for hand-held systems that will be able to perform diagnostic functions in the field that currently require a laboratory test."

Professor Julia Goodfellow, Chief Executive of BBSRC, said, "The success of the research into biochips and the development of the science through the spin-out company shows how cutting edge research in the biosciences can meet real world challenges. Bochips have the potential to make a real difference in medical diagnostics and drug development."

The research is being carried out at the Wales College of Medicine and involves researchers at Cardiff University, University of Bangor, the Gray Cancer Institute in London and collaboration with the University of Warwick and laboratories in the United States.

Matt Goode | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>