Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses may one day help treat brain tumors

08.04.2005


New research shows that a virus designed to kill cancer cells can significantly increase the survival of mice with an incurable human brain tumor, even in some animals with advanced disease.



The study used a genetically altered herpes simplex virus that infects and reproduces only in malignant glioma cells and kills them. The altered virus leaves normal tissues unharmed. Viruses that kill cancer cells are known as oncolytic viruses.

The findings are published in the April 1 issue of the journal Cancer Research. “This is another step toward making oncolytic viruses more effective and safer for use in the treatment of cancer,” says E. Antonio Chiocca, professor and chairman of neurological surgery at The Ohio State University Medical Center. “This is a preliminary study,” Chiocca emphasized. “This virus cannot yet be used in humans. To go from animal studies to human studies is a very long process, especially for a treatment that uses viruses.”


Malignant gliomas are cancers in the brain that progress quickly after diagnosis. They are nearly always fatal, Chiocca says. The average survival following diagnosis is about a year. They are usually treated using surgery, chemotherapy and radiation. “Unfortunately, the average survival time for these patients has not improved in more than 30 years,” says Chiocca, who also directs OSU’s Dardinger Center for Neuro-oncology and co-leads the Viral Oncogenesis Program at the OSU Comprehensive Cancer Center. “There is a real need for new therapies.”

He believes oncolytic viruses offer a promising new strategy. Chiocca’s collaborators for the study included Yoshinaga Saeki, associate professor of neurosurgery, who directed the research, and first author Hirokazu Kambara, a post-doctoral fellow.

The study began with a laboratory version of a herpes virus that was missing several genes. The virus could infect only malignant glioma cells, but once inside the cells, it reproduced, or replicated, poorly. “Instead of making 1,000 copies of itself, it might only make 10,” Chiocca says. The virus therefore had only a weak ability to kill cancer cells and shrink tumors.

For this study, Saeki, Kambara and Chiocca restored the virus’s ability to replicate at high levels by returning one of the genes that had been removed from the virus. First, though, the researchers modified the gene, known as ICP34.5, so that it would be active only in cells that made a protein called nestin.

Why nestin? Usually, cells make nestin only during embryonic development. After that, it is absent from cells. But malignant glioma (and some other cancers) begin producing nestin again. This sets the cancer cells apart from normal cells and gave the researchers the trigger they needed.

The researchers tested the modified virus first in laboratory-grown malignant glioma cells. They found that the ICP34.5 viruses could again replicate at high levels.

Then the researchers tested the virus in mice with implanted human gliomas. In one set of experiments, the researchers gave the virus to the mice early, seven days after implanting the tumors. Untreated mice lived for 21 days after tumor implantation. Eight of 10 mice treated with the ICP34.5 virus survived 90 days after implantation. Two of 10 mice treated with a control virus survived 90 days.

The control virus was very similar to a type used in clinical trials testing viral treatment of malignant glioma. It was similar to the experimental virus, but it lacked the ICP34.5 gene. But human glioma patients are usually diagnosed and treated later in the disease, after symptoms begin. The researchers therefore conducted an experiment that simulated that condition. They injected the virus into tumors 19 days after implantation and when the mice began showing symptoms, which is similar to the case in human treatment.

In this experiment, two of 10 animals treated with the ICP34.5 virus survived 24 days after implantation. Of mice treated with the control virus, all 10 had died by day 21, a statistically significant difference. “The treatment extended the animals’ lives by several days,” Chiocca says. “If we could achieve a proportional increase in humans with malignant glioma, that would be a very significant advance.”

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>