Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular motors cooperate in moving cellular cargo, study shows

08.04.2005


Researchers using an extremely fast and accurate imaging technique have shed light on the tiny movements of molecular motors that shuttle material within living cells. The motors cooperate in a delicate choreography of steps, rather than engaging in the brute-force tug of war many scientists had imagined.



"We discovered that two molecular motors -- dynein and kinesin -- do not compete for control, even though they want to move the same cargo in opposite directions," said Paul Selvin, a professor of physics at the University of Illinois at Urbana-Champaign and corresponding author of a paper to appear in the journal Science, as part of the Science Express Web site, on April 7. "We also found that multiple motors can work in concert, producing more than 10 times the speed of individual motors measured outside the cell."

Dynein and kinesin are biomolecular motors that haul cargo from one part of a cell to another. Dynein moves material from the cell membrane to the nucleus; kinesin moves material from the cell nucleus to the cell membrane. The little cargo transporters accomplish their task by stepping along filaments called microtubules.


To measure such minuscule motion, Selvin and colleagues at Illinois developed a technique called Fluorescence Imaging with One Nanometer Accuracy. The technique can locate a fluorescent dye to within 1.5 nanometers (one nanometer is a billionth of a meter, or about 10,000 times smaller than the width of a human hair). Recent improvements to FIONA now allow scientists to detect motion with millisecond time resolution.

Selvin’s team used FIONA to track fluorescently labeled peroxisomes (organelles that break down toxic substances) inside specially cultured fruit fly cells. This was the first time the imaging technique had been used inside a living cell.

"Our measurements show that both dynein and kinesin carry the peroxisomes in a step-by-step fashion, moving about 8 nanometers per step," said Selvin, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the Illinois campus.

"Because we see a fairly constant step size, we don’t believe a tug of war is occurring," Selvin said. "If the dynein was fighting the kinesin, we would expect to see a lot of smaller steps as well."

The researchers also noted that faster movements occurred with the same step size, but with greater rapidity. When measured outside the cell, kinesin moved about 0.5 microns per second. Inside the cell, the speed increased to 12 microns per second.

"There must be a mechanism that allows the peroxisomes to move by multiple motors much faster than independent, uncoupled kinesins and dyneins," Selvin said. "It appears that motors are somehow regulated, being turned on or off in a fashion that prevents them from simultaneously dragging the peroxisome."

In the future, Selvin wants to combine FIONA and an optical trap technique to monitor the speed and direction of a peroxisome, and the force acting upon it.

"By measuring force we can determine how many molecular motors are working together," Selvin said. "This will help us further understand these marvelous little machines."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>