Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify potential therapeutic target for Huntington’s disease

07.04.2005


Researchers studying yeast cells have identified a metabolic enzyme as a potential therapeutic target for treating Huntington’s disease, a fatal inherited neurodegenerative disorder for which there is currently no effective treatment. The group, whose results appear in the May issue of Nature Genetics, includes researchers from the University of Washington School of Medicine in Seattle and the University of Maryland School of Medicine in Baltimore. The paper was published online in advance at the journal’s Web site, http://www.nature.com/ng/index.html.



The group performed a genetic experiment known as a loss-of-function suppressor screen, which searches for genes that, when switched off, reduce the toxic effects of the mutant protein associated with Huntington’s. One of the genes they identified encodes an enzyme, called KMO, that has been previously implicated in the disease. The enzyme functions in a metabolic pathway that is activated at early stages of the disease in people with Huntington’s, as well as in animal models of the disease.

"The nice thing about this finding is that there is a chemical compound available that inhibits KMO activity," said Dr. Paul Muchowski, assistant professor of pharmacology at the UW, who led the study. "We’re in the midst of testing that compound in a mouse model of Huntington’s disease."


Further support for KMO as a therapeutic target for Huntington’s disease comes from a recent study led by Dr. Aleksey G. Kazantsev of Harvard Medical School. In this study, researchers used cell-based experiments to screen about 20,000 chemical compounds, and identified one that suppresses neurodegeneration in a fly model of the disease. That compound has a very similar chemical structure as the drug that inhibits the target identified by Muchowski’s group. The results appeared in the Jan. 18, 2005, issue of the Proceedings of the National Academy of Sciences.

In addition to finding a potential drug target for future Huntington’s treatment, the study by Muchowski and his colleagues could take research on the disease in a new direction: towards microglial cells, which are immune cells in the brain. Previous research has focused exclusively on neuronal cells, but the enzyme KMO is found predominantly in microglial cells. Since inhibiting KMO activity has a direct effect on toxicity of the mutant protein associated with Huntington’s, that could mean microgial cells are home to an important step in progression of the disease.

Huntington’s affects an estimated 30,000 people in the United States. It is characterized by loss of motor control and cognitive functions, as well as by depression or other psychiatric problems.

Justin Reedy | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>