Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene found in mice may play role in determining susceptibility to tuberculosis in humans


Gene is found in the chromosomal region that influences innate immunity to tuberculosis

Researchers from the Harvard School of Public Health studying tuberculosis resistance and susceptibility in animals have identified a gene in mice which plays a significant role in limiting the multiplication of intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes inside host cells. The gene, Intracellular pathogen resistance 1 (Ipr1), found in the chromosome location known as sst1 (super susceptibility to tuberculosis 1), turns on a regulated cell death pathway of the bacteria-infected cells causing apoptosis and prevents catastrophic cell death, or necrosis. The findings appear in a paper in the April 7, 2005 issue of the journal Nature.

It is estimated that 8 million people are infected with tuberculosis annually with approximately 2 million of those dying from the lung disease per year. Yet only about 10 percent of people infected actually develop tuberculosis. Stress, malnutrition and other environmental factors significantly influence an individuals’ susceptibility to developing the disease. In addition, genetic factors have been known to play an important role in determining outcomes of tuberculosis infection in human and other mammalian hosts. However, individual host resistance genes such as Ipr1, involved in innate immunity for tuberculosis, have been difficult to pinpoint, because of a highly complex multigenic control of host immunity.

The researchers studied which genes might influence an individuals’ susceptibility to developing tuberculosis and found that an important genetic determinant of host resistance to tuberculosis is encoded within the region on mouse chromosome 1, which they named sst1. By identifying the Ipr1 gene within the sst1 region they believe they have uncovered a new mechanism that helps in limiting the possibility of developing M. tuberculosis, especially in the lungs.

Of interest, the Ipr1 gene also controls innate immunity to another intracellular pathogen Listeria monocytogenes, a parasitic disease transferred to humans generally from consuming infected animal products and that causes flu-like symptoms, swelling of the brain and for pregnant women potential loss of fetus. That suggests that the Ipr1 gene controls a general mechanism that protects against other intracellular pathogens besides M. tuberculosis. The researchers suggest that the human equivalent of Ipr1 might be a gene described as SP110 and may play a significant role in determining tuberculosis susceptibility in people.

Igor Kramnik, assistant professor of immunology and infectious disease at the Harvard School of Public Health and senior author of the study said, "The findings are encouraging and highlight the role of genetic function in determining whether a person has a high risk of developing tuberculosis. Finding a specific gene in a mouse that has a human equivalent within a highly conserved genetic region suggests that the human equivalent may also be involved in innate immunity to the disease and may further lead to development of diagnostic tests and prevention approaches." He added, "Further studies of the Ipr1 gene in a mouse model and its counterpart in humans will improve our understanding of how our immune system works during complex interactions with live, and very successful, pathogens."

Kevin C. Myron | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>